login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A304472
T(n,k)=Number of nXk 0..1 arrays with every element unequal to 0, 1, 2, 3 or 6 king-move adjacent elements, with upper left element zero.
7
1, 2, 2, 4, 8, 4, 8, 21, 21, 8, 16, 49, 41, 49, 16, 32, 120, 117, 117, 120, 32, 64, 293, 316, 322, 316, 293, 64, 128, 719, 810, 1100, 1100, 810, 719, 128, 256, 1774, 2208, 2957, 5063, 2957, 2208, 1774, 256, 512, 4389, 6012, 8254, 18879, 18879, 8254, 6012, 4389
OFFSET
1,2
COMMENTS
Table starts
...1....2.....4.....8......16.......32.......64.......128........256
...2....8....21....49.....120......293......719......1774.......4389
...4...21....41...117.....316......810.....2208......6012......15837
...8...49...117...322....1100.....2957.....8254.....26698......77788
..16..120...316..1100....5063....18879....68338....289227....1157258
..32..293...810..2957...18879....89071...380640...2075796...10775870
..64..719..2208..8254...68338...380640..1802240..12149499...76809028
.128.1774..6012.26698..289227..2075796.12149499.101407827..820468158
.256.4389.15837.77788.1157258.10775870.76809028.820468158.8813328376
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 3*a(n-1) +a(n-2) -4*a(n-3) -4*a(n-4) for n>5
k=3: [order 10] for n>12
k=4: [order 21] for n>25
k=5: [order 84] for n>88
EXAMPLE
Some solutions for n=5 k=4
..0..0..1..0. .0..1..0..0. .0..0..0..0. .0..0..0..1. .0..0..0..0
..0..1..1..1. .1..0..1..1. .0..0..0..0. .0..0..1..0. .0..0..0..0
..1..1..1..1. .1..1..1..1. .0..0..1..0. .0..0..0..1. .0..1..0..0
..1..0..0..1. .1..0..1..1. .1..1..0..1. .0..0..1..0. .0..1..1..0
..0..1..1..0. .0..0..1..1. .1..1..1..1. .1..0..0..1. .0..0..0..0
CROSSREFS
Column 1 is A000079(n-1).
Column 2 is A303721.
Sequence in context: A305230 A304775 A316518 * A316289 A306053 A317230
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, May 13 2018
STATUS
approved