login
A306053
T(n,k)=Number of nXk 0..1 arrays with every element unequal to 0, 1, 2, 3, 6 or 7 king-move adjacent elements, with upper left element zero.
7
1, 2, 2, 4, 8, 4, 8, 21, 21, 8, 16, 49, 45, 49, 16, 32, 120, 142, 142, 120, 32, 64, 293, 439, 458, 439, 293, 64, 128, 719, 1261, 1962, 1962, 1261, 719, 128, 256, 1774, 3826, 6604, 12349, 6604, 3826, 1774, 256, 512, 4389, 11770, 22446, 66149, 66149, 22446, 11770
OFFSET
1,2
COMMENTS
Table starts
...1....2.....4......8......16........32.........64..........128...........256
...2....8....21.....49.....120.......293........719.........1774..........4389
...4...21....45....142.....439......1261.......3826........11770.........35152
...8...49...142....458....1962......6604......22446........86464........311891
..16..120...439...1962...12349.....66149.....321707......1803281.......9990733
..32..293..1261...6604...66149....554682....3914486.....34263459.....301965791
..64..719..3826..22446..321707...3914486...36596835....458669749....5842600934
.128.1774.11770..86464.1803281..34263459..458669749...8395262149..162463649507
.256.4389.35152.311891.9990733.301965791.5842600934.162463649507.4973359586800
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 3*a(n-1) +a(n-2) -4*a(n-3) -4*a(n-4) for n>5
k=3: [order 10] for n>12
k=4: [order 21] for n>25
k=5: [order 85] for n>89
EXAMPLE
Some solutions for n=5 k=4
..0..0..1..0. .0..0..0..0. .0..1..1..0. .0..0..1..1. .0..0..0..0
..0..1..1..0. .0..0..0..0. .1..1..0..0. .0..0..1..0. .1..1..1..1
..0..0..0..0. .0..1..0..0. .1..1..1..1. .0..0..0..0. .1..1..1..1
..0..0..1..0. .0..1..0..0. .0..0..1..1. .0..1..1..0. .1..1..1..0
..1..1..0..1. .0..0..0..0. .0..1..1..1. .1..0..0..0. .0..1..0..0
CROSSREFS
Column 1 is A000079(n-1).
Column 2 is A303721.
Sequence in context: A316518 A304472 A316289 * A317230 A304310 A316209
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Jun 18 2018
STATUS
approved