login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A304168 a(n) = 2*3^n - 2^(n-1) (n>=1). 2
5, 16, 50, 154, 470, 1426, 4310, 12994, 39110, 117586, 353270, 1060834, 3184550, 9557746, 28681430, 86060674, 258214790, 774709906, 2324260790, 6973044514, 20919657830, 62760022066, 188282163350, 564850684354, 1694560441670, 5083698102226, 15251127861110, 45753450692194, 137260486294310, 411781727318386 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

For n>=2, a(n) is the number of edges of the Sierpinski Gasket Rhombus graph SR(n) (see Theorem 2.1 in the D. Antony Xavier et al. reference).

LINKS

Colin Barker, Table of n, a(n) for n = 1..1000

D. Antony Xavier, M. Rosary, and Andrew Arokiaraj, Topological properties of Sierpinski Gasket Rhombus graphs, International J. of Mathematics and Soft Computing, 4, No. 2, 2014, 95-104.

Index entries for linear recurrences with constant coefficients, signature (5,-6).

FORMULA

From Colin Barker, May 10 2018: (Start)

G.f.: x*(5 - 9*x) / ((1 - 2*x)*(1 - 3*x)).

a(n) = 5*a(n-1) - 6*a(n-2) for n>2.

(End)

MAPLE

seq(2*3^n-2^(n-1), n = 1 .. 40);

PROG

(PARI) Vec(x*(5 - 9*x) / ((1 - 2*x)*(1 - 3*x)) + O(x^30)) \\ Colin Barker, May 10 2018

(GAP) List([1..35], n->2*3^n-2^(n-1)); # Muniru A Asiru, May 10 2018

CROSSREFS

Cf. A304167, A304169, A304170.

Sequence in context: A007806 A037480 A027108 * A317817 A077840 A007343

Adjacent sequences:  A304165 A304166 A304167 * A304169 A304170 A304171

KEYWORD

nonn,easy

AUTHOR

Emeric Deutsch, May 10 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 25 16:59 EDT 2019. Contains 322461 sequences. (Running on oeis4.)