login
A304166
a(n) = 972*n^2 - 1224*n + 414 with n > 0.
2
162, 1854, 5490, 11070, 18594, 28062, 39474, 52830, 68130, 85374, 104562, 125694, 148770, 173790, 200754, 229662, 260514, 293310, 328050, 364734, 403362, 443934, 486450, 530910, 577314, 625662, 675954, 728190, 782370, 838494, 896562, 956574, 1018530, 1082430, 1148274, 1216062, 1285794, 1357470, 1431090, 1506654
OFFSET
1,1
COMMENTS
a(n) provides the second Zagreb index of the HcDN1(n) network (see Fig. 3 in the Hayat et al. paper).
The second Zagreb index of a simple connected graph is the sum of the degree products d(i)d(j) over all edges ij of the graph.
The M-polynomial of HcDN1(n) is M(HcDN1(n); x,y) = 6x^3*y^3 + 12(n-1)x^3*y^5 + 6nx^3*y^6 + 18(n-1)x^5*y^6 + (27n^2 - 57n + 30)x^6*y^6. - Emeric Deutsch, May 11 2018
LINKS
Emeric Deutsch and Sandi Klavzar, M-polynomial and degree-based topological indices, Iranian J. Math. Chemistry, 6, No. 2, 2015, 93-102.
S. Hayat, M. A. Malik, and M. Imran, Computing topological indices of honeycomb derived networks, Romanian J. of Information Science and Technology, 18, No. 2, 2015, 144-165.
FORMULA
From Colin Barker, May 10 2018: (Start)
G.f.: 18*x*(9 + 76*x + 23*x^2)/(1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3. (End)
E.g.f.: 18*(exp(x)*(23 - 14*x + 54*x^2) - 23). - Stefano Spezia, Apr 15 2023
MAPLE
seq(972*n^2-1224*n+414, n = 1 .. 40);
PROG
(PARI) a(n) = 972*n^2-1224*n+414; \\ Altug Alkan, May 09 2018
(PARI) Vec(18*x*(9 + 76*x + 23*x^2) / (1 - x)^3 + O(x^60)) \\ Colin Barker, May 10 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, May 09 2018
STATUS
approved