login
A302833
Expansion of (1/(1 - x))*Product_{k>=1} 1/(1 - x^(k^2)).
5
1, 2, 3, 4, 6, 8, 10, 12, 15, 19, 23, 27, 32, 38, 44, 50, 58, 67, 77, 87, 99, 112, 126, 140, 156, 175, 195, 216, 239, 265, 292, 320, 351, 385, 422, 460, 503, 549, 598, 648, 703, 763, 826, 892, 963, 1041, 1122, 1206, 1296, 1394, 1498, 1605, 1721, 1845, 1977, 2112, 2256, 2410, 2573
OFFSET
0,2
COMMENTS
Partial sums of A001156.
Number of partitions of n into squares if there are two kinds of 1's.
FORMULA
G.f.: (1/(1 - x))*Sum_{j>=0} x^(j^2)/Product_{k=1..j} (1 - x^(k^2)).
From Vaclav Kotesovec, Apr 13 2018: (Start)
a(n) ~ exp(3*Pi^(1/3) * Zeta(3/2)^(2/3) * n^(1/3) / 2^(4/3)) / (2*Pi^(3/2) * sqrt(3*n)).
a(n) ~ 2^(4/3) * n^(2/3) / (Pi^(1/3) * Zeta(3/2)^(2/3)) * A001156(n). (End)
MAPLE
b:= proc(n, i) option remember; `if`(n=0 or i=1, n+1,
b(n, i-1)+ `if`(i^2>n, 0, b(n-i^2, i)))
end:
a:= n-> b(n, isqrt(n)):
seq(a(n), n=0..100); # Alois P. Heinz, Apr 13 2018
MATHEMATICA
nmax = 58; CoefficientList[Series[1/(1 - x) Product[1/(1 - x^k^2), {k, 1, nmax}], {x, 0, nmax}], x]
nmax = 58; CoefficientList[Series[1/(1 - x) Sum[x^j^2/Product[(1 - x^k^2), {k, 1, j}], {j, 0, nmax}], {x, 0, nmax}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Apr 13 2018
STATUS
approved