login
A302494
Products of distinct primes of squarefree index.
23
1, 2, 3, 5, 6, 10, 11, 13, 15, 17, 22, 26, 29, 30, 31, 33, 34, 39, 41, 43, 47, 51, 55, 58, 59, 62, 65, 66, 67, 73, 78, 79, 82, 83, 85, 86, 87, 93, 94, 101, 102, 109, 110, 113, 118, 123, 127, 129, 130, 134, 137, 139, 141, 143, 145, 146, 149, 155, 157, 158, 163
OFFSET
1,2
COMMENTS
A prime index of n is a number m such that prime(m) divides n.
EXAMPLE
Entry A302242 describes a correspondence between positive integers and multiset multisystems. In this case it gives the following sequence of set systems.
01: {}
02: {{}}
03: {{1}}
05: {{2}}
06: {{},{1}}
10: {{},{2}}
11: {{3}}
13: {{1,2}}
15: {{1},{2}}
17: {{4}}
22: {{},{3}}
26: {{},{1,2}}
29: {{1,3}}
30: {{},{1},{2}}
31: {{5}}
33: {{1},{3}}
34: {{},{4}}
39: {{1},{1,2}}
MATHEMATICA
Select[Range[100], Or[#===1, SquareFreeQ[#]&&And@@SquareFreeQ/@PrimePi/@FactorInteger[#][[All, 1]]]&]
PROG
(PARI) is(n) = if(bigomega(n)!=omega(n), return(0), my(f=factor(n)[, 1]~); for(k=1, #f, if(!issquarefree(primepi(f[k])) && primepi(f[k])!=1, return(0)))); 1 \\ Felix Fröhlich, Apr 10 2018
KEYWORD
nonn
AUTHOR
Gus Wiseman, Apr 08 2018
STATUS
approved