This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A270995 Expansion of Product_{k>=1} 1/(1 - A000009(k)*x^k). 6
 1, 1, 2, 4, 7, 12, 23, 37, 64, 108, 180, 290, 488, 772, 1251, 2001, 3180, 4982, 7913, 12261, 19162, 29669, 45804, 70187, 108029, 164276, 250267, 379439, 574067, 864044, 1302169, 1949050, 2917900, 4352796, 6481627, 9620256, 14274080, 21090608, 31142909 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS The number of ways a number can be partitioned into not necessarily distinct parts and then each part is partitioned into distinct parts. Also a(n) > A089259(n) for n>5. - Gus Wiseman, Apr 10 2016 LINKS Vaclav Kotesovec, Table of n, a(n) for n = 0..5000 Vaclav Kotesovec, Graph - The asymptotic ratio (100000 terms) FORMULA From Vaclav Kotesovec, Mar 28 2016: (Start) a(n) ~ c * n^2 * 2^(n/3), where c = 436246966131366188.9451742926272200575837456478739... if mod(n,3) = 0 c = 436246966131366188.9351143199611598469443841182807... if mod(n,3) = 1 c = 436246966131366188.9322714926383227135786894927498... if mod(n,3) = 2 (End) EXAMPLE a(6)=23: {(6), (5)(1), (51), (4)(2), (42), (4)(1)(1), (41)(1), (3)(3), (3)(2)(1), (3)(21), (32)(1), (31)(2), (21)(3), (321), (3)(1)(1)(1), (31)(1)(1), (2)(2)(2), (2)(2)(1)(1), (21)(2)(1), (21)(21), (2)(1)(1)(1)(1), (21)(1)(1)(1), (1)(1)(1)(1)(1)(1)}. MATHEMATICA nmax = 50; CoefficientList[Series[Product[1/(1-PartitionsQ[k]*x^k), {k, 1, nmax}], {x, 0, nmax}], x] CROSSREFS Cf. A063834 (twice partitioned numbers), A089259, A271619. Sequence in context: A280352 A135360 A082548 * A007323 A099604 A026790 Adjacent sequences:  A270992 A270993 A270994 * A270996 A270997 A270998 KEYWORD nonn AUTHOR Vaclav Kotesovec, Mar 28 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.