login
A301601
Numbers k such that k^6 can be written as a sum of 11 positive 6th powers.
1
18, 19, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93
OFFSET
1,1
COMMENTS
If k is in the sequence, then k*m is in the sequence for every positive integer m.
Conjecture: 35 is the largest integer not in the sequence. - Jon E. Schoenfield, Mar 24 2018
LINKS
Eric Weisstein's World of Mathematics, Diophantine Equation 6th Powers.
EXAMPLE
18^6 = 2^6 + 5^6 + 5^6 + 5^6 + 7^6 + 7^6 + 9^6 + 9^6 + 10^6 + 14^6 + 17^6.
19^6 = 1^6 + 7^6 + 7^6 + 7^6 + 8^6 + 12^6 + 13^6 + 13^6 + 13^6 + 13^6 + 17^6.
30^6 = 1^6 + 2^6 + 7^6 + 7^6 + 9^6 + 12^6 + 17^6 + 17^6 + 19^6 + 23^6 + 28^6.
31^6 = 3^6 + 4^6 + 7^6 + 7^6 + 11^6 + 11^6 + 13^6 + 13^6 + 23^6 + 25^6 + 28^6.
32^6 = 7^6 + 7^6 + 7^6 + 17^6 + 17^6 + 17^6 + 18^6 + 20^6 + 20^6 + 25^6 + 29^6.
33^6 = 1^6 + 4^6 + 4^6 + 6^6 + 10^6 + 14^6 + 20^6 + 20^6 + 24^6 + 28^6 + 28^6.
34^6 = 1^6 + 1^6 + 2^6 + 5^6 + 7^6 + 7^6 + 12^6 + 17^6 + 23^6 + 28^6 + 31^6.
36^6 = 1^6 + 1^6 + 1^6 + 7^6 + 14^6 + 14^6 + 19^6 + 19^6 + 19^6 + 30^6 + 33^6.
CROSSREFS
Sequence in context: A308894 A031956 A095393 * A056022 A118510 A022108
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 24 2018
EXTENSIONS
a(9)-a(65) from Jon E. Schoenfield, Mar 24 2018
STATUS
approved