login
A301378
a(n) = 10*A007605(n) - 9*A007652(n).
1
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 11, 13, 17, 19, 23, 37, 41, 47, 49, 59, 61, 67, 73, 77, 83, 89, 91, 101, 103, 107, 109, 31, 43, 47, 49, 53, 59, 61, 71, 77, 83, 89, 91, 97, 101, 103, 113, 37, 41, 43, 47, 61
OFFSET
1,1
COMMENTS
Equivalently, a(n) is the sum of all but the last digit of the n-th prime, concatenated with that last digit.
It appears that as the prime number xyzd transformed by (x+y+z)*10 +d; the larger the prime the less frequent the result is prime....
LINKS
FORMULA
Let ...xyzd represent the decimal expansion of prime(n); then a(n) = (... + x + y + z)*10 + d.
a(n) = 10*A007605(n) - 9*A007652(n). - Robert Israel, Mar 25 2018
EXAMPLE
For p=1571 (prime), 1+5+7 = 13; 13*10 = 130; 130+1 = 131 (prime).
MAPLE
map(t -> 10*convert(convert(t, base, 10), `+`)-9*(t mod 10), [seq(ithprime(i), i=1..100)]); # Robert Israel, Mar 25 2018
MATHEMATICA
Array[10 Total@ # - 9 Last@ # &@ IntegerDigits[Prime@ #] &, 67] (* Michael De Vlieger, Apr 27 2018 *)
PROG
(PARI) a(n) = my(p=prime(n); d=p % 10); sumdigits(p-d)*10+d; \\ Michel Marcus, Mar 23 2018
CROSSREFS
KEYWORD
nonn,easy,base,less
AUTHOR
Edmund Algeo, Mar 19 2018
STATUS
approved