login
A300978
Number of partitions of n into distinct parts having the same number of divisors as n.
7
1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 1, 3, 1, 2, 2, 5, 1, 1, 1, 2, 1, 7, 1, 9, 2, 3, 2, 5, 1, 11, 3, 5, 1, 14, 1, 15, 2, 1, 6, 19, 1, 1, 3, 10, 2, 26, 2, 13, 1, 15, 12, 35, 1, 39, 18, 2, 1, 22, 2, 50, 2, 27, 2, 61, 1, 67, 31, 3, 3, 39, 2, 87, 1, 1, 49, 102, 1, 55
OFFSET
0,6
FORMULA
a(n) = [x^n] Product_{d(k) = d(n)} (1 + x^k).
EXAMPLE
a(14) = 2 because we have [14] and [8, 6], where 14, 8 and 6 are numbers with 4 divisors.
MAPLE
with(numtheory):
a:= proc(m) option remember; local k, b; k, b:= tau(m),
proc(n, i) option remember; `if`(i*(i+1)/2<n, 0, `if`(n=0, 1,
b(n, i-1)+`if`(tau(i)=k, b(n-i, min(i-1, n-i)), 0)))
end: b(m$2)
end:
seq(a(n), n=0..100); # Alois P. Heinz, Mar 17 2018
MATHEMATICA
Table[SeriesCoefficient[Product[(1 + Boole[DivisorSigma[0, k] == DivisorSigma[0, n]] x^k), {k, 1, n}], {x, 0, n}], {n, 0, 85}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Mar 17 2018
STATUS
approved