

A156144


Number of partitions of n into parts having in decimal representation the same digital root as n has.


5



1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 3, 2, 3, 1, 1, 2, 1, 1, 3, 5, 2, 5, 1, 1, 2, 1, 1, 5, 8, 4, 8, 2, 1, 4, 1, 1, 7, 13, 5, 13, 2, 2, 5, 1, 1, 11, 20, 9, 19, 3, 2, 9, 1, 1, 15, 31, 12, 29, 4, 3, 11, 2, 1, 22, 46, 20, 42, 7, 4, 18, 2, 2, 30, 68, 27, 61, 9, 6, 23, 3, 2, 42, 98, 42, 85
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,10


COMMENTS

a(n) <= a(n+9); Max{n: a(n)=1} = 71;
A156145 and A017173 give record values and where they occur: a(A017173(n1))=A156145(n);
a(A017173(n)) = A116371(A017173(n)).


LINKS

R. Zumkeller, Table of n, a(n) for n = 1..500


EXAMPLE

a(19) = #{19, 10+1+1+1+1+1+1+1+1+1, 19x1} = 3;
a(20) = #{20, 2+2+2+2+2+2+2+2+2+2} = 2;
a(21) = #{21, 3+3+3+3+3+3+3, 12+3+3+3} = 3;
a(22) = #{22} = 1;


PROG

(Haskell)
a156144 n = p [x  x < [1..n], a010888 x == a010888 n] n where
p _ 0 = 1
p [] _ = 0
p ks'@(k:ks) m = if m < k then 0 else p ks' (m  k) + p ks m
 Reinhard Zumkeller, Feb 04 2014


CROSSREFS

A010888, A114102.
Sequence in context: A330738 A025921 A300978 * A136044 A184240 A244840
Adjacent sequences: A156141 A156142 A156143 * A156145 A156146 A156147


KEYWORD

base,nonn,look


AUTHOR

Reinhard Zumkeller, Feb 05 2009


STATUS

approved



