login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A300334
Primes of a056240-type 2.
3
211, 541, 631, 673, 1693, 1801, 2879, 3181, 3271, 3299, 3343, 3571, 3943, 4177, 4441, 4561, 4751, 4783, 4813, 4861, 5147, 5381, 5431, 5501, 5779, 6029, 6197, 6421, 6469, 6521, 6599, 6637, 6883, 7103, 7321, 7369, 7477, 7573, 7603, 7789, 7901, 7963, 8419, 8443, 8641, 8923, 9091, 9587, 9643, 9733, 9781, 9871, 10513
OFFSET
1,1
COMMENTS
Prime(r) has a056240-type k if A295185(prime(r))=prime(r-k)*A056240(prime(r)-prime(r-k)).
This sequence lists primes having a056240-type k=2, each having form ~2(g1,g2) where g1 is the first gap below prime(r), and g2 is the second (notation explained in A295185). The majority of primes appear to be of a056240-type 1.
EXAMPLE
211 is included because the smallest composite number whose sum of prime factors (with repetition)=211 is 6501=197*33, a multiple of the second prime below 211, not the first. 211~2(12,2) is the smallest prime to have this property. Likewise 541~2(18,2), 1693~2(24,2), 2879~2(18,4), etc.
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
Edited by N. J. A. Sloane, Mar 10 2018
STATUS
approved