|
|
A299761
|
|
Irregular triangle read by rows: T(n,k), n >= 1, k >= 1, in which row n lists the middle divisors of n, or 0 if there are no middle divisors of n.
|
|
18
|
|
|
1, 1, 0, 2, 0, 2, 3, 0, 2, 3, 0, 0, 3, 4, 0, 0, 3, 5, 4, 0, 3, 0, 4, 5, 0, 0, 0, 4, 6, 5, 0, 0, 4, 7, 0, 5, 6, 0, 4, 0, 0, 5, 7, 6, 0, 0, 0, 5, 8, 0, 6, 7, 0, 0, 5, 9, 0, 0, 6, 8, 7, 5, 0, 0, 0, 6, 9, 0, 7, 8, 0, 0, 0, 6, 10, 0, 0, 7, 9, 8, 0, 6, 11, 0, 0, 0, 7, 10, 0, 6, 8, 9, 0, 0, 0, 0, 7, 11, 0, 0, 8, 10
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,4
|
|
COMMENTS
|
The middle divisors of n are the divisors in the half-open interval [sqrt(n/2), sqrt(n*2)).
|
|
LINKS
|
Michael De Vlieger, Table of n, a(n) for n = 1..14002 (rows 1 <= n <= 10^4)
|
|
EXAMPLE
|
Triangle begins (rows 1..16):
1;
1;
0;
2;
0;
2, 3;
0;
2;
3;
0;
0;
3, 4;
0;
0;
3, 5;
4;
...
For n = 6 the middle divisors of 6 are 2 and 3, so row 6 is [2, 3].
For n = 7 there are no middle divisors of 7, so row 7 is [0].
For n = 8 the middle divisor of 8 is 2, so row 8 is [2].
For n = 72 the middle divisors of 72 are 6, 8 and 9, so row 72 is [6, 8, 9].
|
|
MATHEMATICA
|
Table[Select[Divisors@ n, Sqrt[n/2] <= # < Sqrt[2 n] &] /. {} -> {0}, {n, 80}] // Flatten (* Michael De Vlieger, Jun 14 2018 *)
|
|
PROG
|
(PARI) row(n) = my(v=select(x->((x >= sqrt(n/2)) && (x < sqrt(n*2))), divisors(n))); if (#v, v, [0]); \\ Michel Marcus, Aug 04 2022
|
|
CROSSREFS
|
Row sums give A071090.
The number of nonzero terms in row n is A067742(n).
Nonzero terms give A303297.
Indices of the rows where there are zeros give A071561.
Indices of the rows where there are nonzero terms give A071562.
Cf. A027750, A281007, A299777.
Sequence in context: A209689 A204329 A111565 * A141099 A127710 A137510
Adjacent sequences: A299758 A299759 A299760 * A299762 A299763 A299764
|
|
KEYWORD
|
nonn,tabf,look
|
|
AUTHOR
|
Omar E. Pol, Jun 08 2018
|
|
STATUS
|
approved
|
|
|
|