login
A111565
Largest prime factor of prime power > 1 that divides the n-th composite number; or a(n) = 0 iff n-th composite number is equal to the product of distinct primes.
1
2, 0, 2, 3, 0, 2, 0, 0, 2, 3, 2, 0, 0, 2, 5, 0, 3, 2, 0, 2, 0, 0, 0, 3, 0, 0, 2, 0, 2, 3, 0, 2, 7, 5, 0, 2, 3, 0, 2, 0, 0, 2, 0, 3, 2, 0, 0, 2, 0, 0, 3, 0, 5, 2, 0, 0, 2, 3, 0, 2, 0, 0, 0, 2, 3, 0, 2, 0, 0, 0, 2, 7, 3, 5, 0, 2, 0, 0, 3, 0, 0, 2, 0, 0, 2, 3, 0, 0, 2, 11, 0, 0, 2, 5, 3, 2, 0, 0, 2, 0, 0, 3
OFFSET
1,1
EXAMPLE
a(6) = 2 because C(6) = 12 = 3*2^2 and the largest prime factor of power 2^2 is 2.
a(28) = 0 because C(28) = 42 = 2*3*7 is the product of distinct primes
PROG
(PARI) A002808(n)={for(k=0, primepi(n), isprime(n++)&k--); n} A111565(n)={local(f, r, i); f=factor(A002808(n)); r=0; i=matsize(f)[1]; while((r==0)&&(i>0), if(f[i, 2]>1, r=f[i, 1], i--)); r}
CROSSREFS
Cf. A002808 (composite numbers)
Sequence in context: A058623 A209689 A204329 * A299761 A141099 A127710
KEYWORD
nonn
AUTHOR
Giovanni Teofilatto, Nov 17 2005
EXTENSIONS
a(28) changed by Michael B. Porter, Feb 02 2010
STATUS
approved