login
A299689
T(n,k)=Number of nXk 0..1 arrays with every element equal to 0, 1, 3, 4, 5, 6 or 7 king-move adjacent elements, with upper left element zero.
7
1, 2, 2, 3, 4, 3, 5, 4, 4, 5, 8, 16, 15, 16, 8, 13, 50, 54, 54, 50, 13, 21, 112, 156, 648, 156, 112, 21, 34, 348, 854, 2850, 2850, 854, 348, 34, 55, 1028, 3226, 20882, 23116, 20882, 3226, 1028, 55, 89, 2796, 13013, 159324, 251922, 251922, 159324, 13013, 2796, 89
OFFSET
1,2
COMMENTS
Table starts
..1....2.....3.......5.........8..........13............21..............34
..2....4.....4......16........50.........112...........348............1028
..3....4....15......54.......156.........854..........3226...........13013
..5...16....54.....648......2850.......20882........159324.........1041908
..8...50...156....2850.....23116......251922.......3247879........36816394
.13..112...854...20882....251922.....5740433.....120453362......2322958629
.21..348..3226..159324...3247879...120453362....4582634341....154482346317
.34.1028.13013.1041908..36816394..2322958629..154482346317...9172624830461
.55.2796.56318.7459468.431156277.49439157520.5662974500151.587385690244582
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2)
k=2: a(n) = 2*a(n-1) +2*a(n-2) +6*a(n-3) -10*a(n-4) -8*a(n-5) for n>6
k=3: [order 15] for n>17
k=4: [order 44] for n>46
EXAMPLE
Some solutions for n=5 k=4
..0..1..1..0. .0..0..1..1. .0..0..0..0. .0..0..0..1. .0..0..1..1
..0..1..1..0. .0..0..1..1. .0..0..0..0. .0..0..1..0. .0..0..1..1
..0..0..1..1. .0..1..1..1. .0..1..0..0. .1..1..1..1. .0..0..0..0
..0..0..1..0. .0..0..1..1. .0..0..0..1. .1..1..0..1. .0..1..0..0
..0..0..0..1. .0..0..0..0. .0..0..1..0. .1..1..1..0. .1..0..0..0
CROSSREFS
Column 1 is A000045(n+1).
Column 2 is A298148.
Sequence in context: A299886 A299052 A299814 * A300321 A026254 A091525
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Feb 16 2018
STATUS
approved