login
A299514
T(n,k) = Number of n X k 0..1 arrays with every element equal to 1, 2, 4, 5, 6 or 8 king-move adjacent elements, with upper left element zero.
7
0, 1, 1, 1, 3, 1, 2, 7, 7, 2, 3, 13, 15, 13, 3, 5, 23, 29, 29, 23, 5, 8, 49, 63, 112, 63, 49, 8, 13, 99, 167, 439, 439, 167, 99, 13, 21, 189, 477, 1950, 2336, 1950, 477, 189, 21, 34, 383, 1233, 7702, 13836, 13836, 7702, 1233, 383, 34, 55, 777, 3265, 30277, 84449, 122197
OFFSET
1,5
COMMENTS
Table starts
..0...1....1......2.......3........5..........8..........13............21
..1...3....7.....13......23.......49.........99.........189...........383
..1...7...15.....29......63......167........477........1233..........3265
..2..13...29....112.....439.....1950.......7702.......30277........126429
..3..23...63....439....2336....13836......84449......477162.......2791607
..5..49..167...1950...13836...122197....1190886....10305454......92938855
..8..99..477...7702...84449..1190886...17345466...225351737....3159884395
.13.189.1233..30277..477162.10305454..225351737..4446967161...94825218644
.21.383.3265.126429.2791607.92938855.3159884395.94825218644.3109567007082
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2)
k=2: a(n) = 2*a(n-1) -a(n-2) +4*a(n-3) -4*a(n-4) for n>5
k=3: [order 15] for n>17
k=4: [order 68] for n>70
EXAMPLE
Some solutions for n=5, k=4
..0..1..1..0. .0..1..1..0. .0..1..1..0. .0..1..1..0. .0..0..0..1
..0..0..0..1. .0..0..0..1. .1..0..0..0. .1..0..0..0. .1..1..1..1
..0..0..0..1. .0..0..0..1. .1..0..0..0. .1..0..0..0. .0..1..1..1
..0..0..0..1. .0..0..0..0. .1..0..0..0. .0..0..0..0. .0..1..1..1
..0..1..1..0. .0..1..1..1. .0..1..1..0. .1..1..1..0. .1..0..0..1
CROSSREFS
Column 1 is A000045(n-1).
Column 2 is A297953.
Sequence in context: A298582 A299574 A298396 * A299314 A300115 A100888
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Feb 11 2018
STATUS
approved