login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A299517 Number of nX4 0..1 arrays with every element equal to 0, 3, 4, 5, 6 or 8 king-move adjacent elements, with upper left element zero. 1
1, 2, 5, 8, 41, 117, 476, 1743, 7078, 28743, 116832, 478171, 1955738, 8011036, 32816061, 134450866, 550917593, 2257434204, 9250305870, 37905245020, 155326182456, 636489181785, 2608180914178, 10687710600371, 43795726882138 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Column 4 of A299521.

LINKS

R. H. Hardin, Table of n, a(n) for n = 1..210

FORMULA

Empirical: a(n) = 3*a(n-1) +11*a(n-2) -14*a(n-3) -57*a(n-4) -9*a(n-5) +83*a(n-6) +135*a(n-7) +193*a(n-8) -96*a(n-9) -495*a(n-10) -183*a(n-11) +18*a(n-12) -199*a(n-13) +87*a(n-14) +122*a(n-15) -138*a(n-16) +518*a(n-17) +1198*a(n-18) +958*a(n-19) +342*a(n-20) -518*a(n-21) -1335*a(n-22) -1132*a(n-23) -225*a(n-24) +77*a(n-25) +48*a(n-26) +146*a(n-27) +111*a(n-28) -19*a(n-29) -52*a(n-30) +3*a(n-31) -3*a(n-32) -4*a(n-33) +3*a(n-34) for n>36

EXAMPLE

Some solutions for n=5

..0..0..1..1. .0..0..0..0. .0..0..0..1. .0..0..0..1. .0..0..1..1

..0..0..1..1. .0..0..0..0. .0..0..0..0. .0..0..0..0. .0..0..1..1

..1..1..1..1. .0..0..0..0. .1..0..1..0. .0..0..0..1. .1..0..0..1

..1..1..0..0. .1..1..1..1. .0..0..0..0. .1..1..0..0. .0..0..1..1

..1..1..0..0. .1..1..1..1. .1..0..0..1. .1..1..0..0. .0..0..1..1

CROSSREFS

Cf. A299521.

Sequence in context: A191550 A120342 A214842 * A268660 A180627 A264860

Adjacent sequences:  A299514 A299515 A299516 * A299518 A299519 A299520

KEYWORD

nonn

AUTHOR

R. H. Hardin, Feb 11 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 18 07:50 EDT 2019. Contains 327168 sequences. (Running on oeis4.)