login
A297876
T(n,k)=Number of nXk 0..1 arrays with every element equal to 2, 3 or 5 king-move adjacent elements, with upper left element zero.
8
0, 0, 0, 0, 1, 0, 0, 3, 3, 0, 0, 2, 0, 2, 0, 0, 11, 3, 3, 11, 0, 0, 13, 0, 10, 0, 13, 0, 0, 34, 3, 20, 20, 3, 34, 0, 0, 65, 6, 68, 80, 68, 6, 65, 0, 0, 123, 23, 185, 231, 231, 185, 23, 123, 0, 0, 266, 68, 561, 579, 887, 579, 561, 68, 266, 0, 0, 499, 205, 1588, 2437, 3307, 3307, 2437
OFFSET
1,8
COMMENTS
Table starts
.0...0..0....0....0.....0......0.......0........0.........0.........0
.0...1..3....2...11....13.....34......65......123.......266.......499
.0...3..0....3....0.....3......6......23.......68.......205.......572
.0...2..3...10...20....68....185.....561.....1588......4814.....14322
.0..11..0...20...80...231....579....2437.....7507.....26278.....91622
.0..13..3...68..231...887...3307...13910....55501....228947....947582
.0..34..6..185..579..3307..13778...69160...325394...1617897...7900112
.0..65.23..561.2437.13910..69160..428609..2364407..14043631..81562636
.0.123.68.1588.7507.55501.325394.2364407.15589226.109627764.757954739
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = a(n-1) +3*a(n-2) -4*a(n-4)
k=3: [order 17] for n>18
k=4: [order 52] for n>53
EXAMPLE
Some solutions for n=7 k=4
..0..0..1..1. .0..0..0..0. .0..0..1..1. .0..0..0..0. .0..0..0..0
..0..1..0..1. .0..1..1..0. .1..0..1..0. .0..0..0..0. .0..0..0..0
..0..1..1..0. .1..0..1..0. .1..1..0..0. .1..1..1..1. .1..1..1..1
..0..1..0..1. .1..0..0..1. .1..0..1..0. .1..0..0..1. .1..0..0..1
..0..1..0..1. .1..1..1..1. .1..0..0..1. .0..1..0..1. .0..0..1..0
..0..1..0..1. .0..0..0..0. .1..0..1..0. .0..1..1..0. .1..0..0..1
..0..0..1..1. .0..0..0..0. .1..1..0..0. .0..0..0..0. .1..1..1..1
CROSSREFS
Sequence in context: A287712 A287784 A325010 * A298139 A298087 A298259
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Jan 07 2018
STATUS
approved