OFFSET
0,3
LINKS
Eric Weisstein's World of Mathematics, Barnes G-Function.
Wikipedia, Barnes G-function
FORMULA
a(n) = A^3 * exp(-1/4) * 2^(2*n^2 - 3*n + 11/12) * Pi^(1/2 - n) * BarnesG(n) * BarnesG(n + 1/2)^2 * BarnesG(n+1), where A is the Glaisher-Kinkelin constant A074962.
a(n) ~ 2^(2*n^2 - n - 1/12) * exp(1/12 + 2*n - 3*n^2) * n^(2*n^2 - 2*n + 5/12) * Pi^(n - 1/2) / A, where A is the Glaisher-Kinkelin constant A074962.
MATHEMATICA
Table[BarnesG[2*n], {n, 0, 10}]
Table[Glaisher^3 * E^(-1/4) * 2^(2*n^2 - 3*n + 11/12) * Pi^(1/2 - n) * BarnesG[n] * BarnesG[n + 1/2]^2 * BarnesG[n+1], {n, 0, 10}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Dec 16 2017
STATUS
approved