

A296604


Number of Johnson solids with n faces.


5



0, 0, 0, 0, 1, 2, 1, 4, 2, 4, 3, 4, 2, 8, 1, 3, 3, 4, 0, 6, 1, 4, 0, 2, 0, 4, 3, 0, 0, 1, 0, 5, 0, 1, 0, 0, 3, 0, 0, 0, 0, 7, 0, 0, 0, 0, 1, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,6


COMMENTS

Sum(n>0, a(n)) = 92, the number of Johnson solids, as conjectured by Johnson and proved by Zalgaller.
a(n) > 0 if and only if n is a member of A296603.


LINKS

Table of n, a(n) for n=1..65.
Norman W. Johnson, Convex Polyhedra with Regular Faces, Canadian Journal of Mathematics, 18 (1966), 169200.
Eric W. Weisstein, MathWorld: Johnson Solid
Wikipedia, List of Johnson solids
Victor A. Zalgaller, Convex Polyhedra with Regular Faces, Zap. Nauchn. Sem. LOMI, 1967, Volume 2. Pages 5221 (Mi znsl1408).


FORMULA

a(62) = 5.
a(n) = 0 for n > 62.


EXAMPLE

The square pyramid is the only Johnson solid with five faces, so a(5) = 1.


CROSSREFS

Cf. A181708, A242731, A296602, A296603.
Sequence in context: A070556 A277687 A065295 * A261211 A233521 A035685
Adjacent sequences: A296601 A296602 A296603 * A296605 A296606 A296607


KEYWORD

nonn


AUTHOR

Jonathan Sondow, Jan 28 2018


STATUS

approved



