login
A296275
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1)*b(n), where a(0) = 2, a(1) = 3, b(0) = 1, b(1) = 4, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.
2
2, 3, 25, 58, 125, 239, 436, 765, 1311, 2208, 3675, 6065, 9950, 16255, 26477, 43038, 69857, 113275, 183552, 297289, 481347, 779188, 1261159, 2041049, 3302964, 5344825, 8648659, 13994414, 22644065, 36639535, 59284722, 95925447, 155211429, 251138208, 406351043
OFFSET
0,1
COMMENTS
The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622). See A296245 for a guide to related sequences.
LINKS
Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
EXAMPLE
a(0) = 2, a(1) = 3, b(0) = 1, b(1) = 4, b(2) = 5;
a(2) = a(0) + a(1) + b(1)*b(2) = 25;
Complement: (b(n)) = (1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, ...)
MATHEMATICA
a[0] = 2; a[1] = 3; b[0] = 1; b[1] = 4; b[2] = 5;
a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] b[n];
j = 1; While[j < 10, k = a[j] - j - 1;
While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
Table[a[n], {n, 0, k}]; (* A296275 *)
Table[b[n], {n, 0, 20}] (* complement *)
CROSSREFS
Sequence in context: A307922 A048674 A320223 * A295328 A281169 A296281
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Dec 12 2017
STATUS
approved