login
Number A(n,k) of partitions of 1 into exactly k*n+1 powers of 1/(k+1); square array A(n,k), n>=0, k>=0, read by antidiagonals.
12

%I #28 Mar 21 2019 16:27:08

%S 1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,2,3,1,1,1,1,2,4,5,1,1,1,1,2,4,7,

%T 9,1,1,1,1,2,4,8,13,16,1,1,1,1,2,4,8,15,25,28,1,1,1,1,2,4,8,16,29,48,

%U 50,1,1,1,1,2,4,8,16,31,57,92,89,1,1,1,1,2,4,8,16,32,61,112,176,159,1

%N Number A(n,k) of partitions of 1 into exactly k*n+1 powers of 1/(k+1); square array A(n,k), n>=0, k>=0, read by antidiagonals.

%H Alois P. Heinz, <a href="/A294775/b294775.txt">Antidiagonals n = 0..140, flattened</a>

%H Christian Elsholtz, Clemens Heuberger, Daniel Krenn, <a href="https://arxiv.org/abs/1901.11343">Algorithmic counting of nonequivalent compact Huffman codes</a>, arXiv:1901.11343 [math.CO], 2019.

%H Christian Elsholtz, Clemens Heuberger, Helmut Prodinger, <a href="https://arxiv.org/abs/1108.5964">The number of Huffman codes, compact trees, and sums of unit fractions</a>, arXiv:1108.5964 [math.CO], Aug 30, 2011. Also IEEE Trans. Information Theory, Vol. 59, No. 2, 2013 pp. 1065-1075.

%e A(4,1) = 3: [1/4,1/4,1/4,1/8,1/8], [1/2,1/8,1/8,1/8,1/8], [1/2,1/4,1/8,1/16,1/16].

%e A(5,2) = 7: [1/9,1/9,1/9,1/9,1/9,1/9,1/9,1/9,1/27,1/27,1/27], [1/3,1/9,1/9,1/9,1/9,1/27,1/27,1/27,1/27,1/27,1/27], [1/3,1/9,1/9,1/9,1/9,1/9,1/27,1/27,1/81,1/81,1/81], [1/3,1/3,1/27,1/27,1/27,1/27,1/27,1/27,1/27,1/27,1/27], [1/3,1/3,1/9,1/27,1/27,1/27,1/27,1/27,1/81,1/81,1/81], [1/3,1/3,1/9,1/9,1/27,1/81,1/81,1/81,1/81,1/81,1/81], [1/3,1/3,1/9,1/9,1/27,1/27,1/81,1/81,1/243,1/243,1/243].

%e Square array A(n,k) begins:

%e 1, 1, 1, 1, 1, 1, 1, 1, 1, ...

%e 1, 1, 1, 1, 1, 1, 1, 1, 1, ...

%e 1, 1, 1, 1, 1, 1, 1, 1, 1, ...

%e 1, 2, 2, 2, 2, 2, 2, 2, 2, ...

%e 1, 3, 4, 4, 4, 4, 4, 4, 4, ...

%e 1, 5, 7, 8, 8, 8, 8, 8, 8, ...

%e 1, 9, 13, 15, 16, 16, 16, 16, 16, ...

%e 1, 16, 25, 29, 31, 32, 32, 32, 32, ...

%e 1, 28, 48, 57, 61, 63, 64, 64, 64, ...

%p b:= proc(n, r, k) option remember;

%p `if`(n<r, 0, `if`(r=0, `if`(n=0, 1, 0), add(

%p b(n-j, k*(r-j), k), j=0..min(n, r))))

%p end:

%p A:= (n, k)-> `if`(k=0, 1, b(k*n+1, 1, k+1)):

%p seq(seq(A(n, d-n), n=0..d), d=0..14);

%t b[n_, r_, k_] := b[n, r, k] = If[n < r, 0, If[r == 0, If[n == 0, 1, 0], Sum[b[n - j, k*(r - j), k], {j, 0, Min[n, r]}]]];

%t A[n_, k_] := If[k == 0, 1, b[k*n + 1, 1, k + 1]];

%t Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 14}] // Flatten (* _Jean-François Alcover_, Nov 11 2017, after _Alois P. Heinz_ *)

%Y Columns k=0-10 give (offsets may differ): A000012, A002572, A176485, A176503, A194628, A194629, A194630, A194631, A194632, A194633, A295081.

%Y Main diagonal gives A011782(n-1) for n>0.

%Y Cf. A294746.

%K nonn,tabl

%O 0,14

%A _Alois P. Heinz_, Nov 08 2017