login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A294587
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of Product_{j>=1} (1 - j*x^j)^(j^k).
3
1, 1, -1, 1, -1, -2, 1, -1, -4, -1, 1, -1, -8, -5, -1, 1, -1, -16, -19, -3, 5, 1, -1, -32, -65, -13, 23, 1, 1, -1, -64, -211, -63, 131, 44, 13, 1, -1, -128, -665, -301, 815, 497, 104, 4, 1, -1, -256, -2059, -1383, 5195, 4840, 1149, 70, 0, 1, -1, -512, -6305, -6133, 33143, 45021, 13752, 662, -93, 2
OFFSET
0,6
LINKS
FORMULA
A(0,k) = 1 and A(n,k) = -(1/n) * Sum_{j=1..n} (Sum_{d|j} d^(k+1+j/d)) * A(n-j,k) for n > 0.
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, ...
-1, -1, -1, -1, -1, ...
-2, -4, -8, -16, -32, ...
-1, -5, -19, -65, -211, ...
-1, -3, -13, -63, -301, ...
CROSSREFS
Columns k=0..2 give A022661, A266964, A294588.
Rows n=0..1 give A000012, (-1)*A000012.
Cf. A283272.
Sequence in context: A178411 A257598 A294580 * A064645 A285425 A008307
KEYWORD
sign,tabl
AUTHOR
Seiichi Manyama, Nov 03 2017
STATUS
approved