login
A293859
Prime factors of numbers of the form k^2 + 10.
3
2, 5, 7, 11, 13, 19, 23, 37, 41, 47, 53, 59, 89, 103, 127, 131, 139, 157, 167, 173, 179, 197, 211, 223, 241, 251, 263, 277, 281, 293, 317, 331, 367, 373, 379, 383, 397, 401, 409, 419, 449, 463, 487, 491, 499, 503, 521, 557, 569, 571, 601, 607, 613, 619, 641
OFFSET
1,1
COMMENTS
Primes p such that Legendre(-10,p) = 0 or 1. - N. J. A. Sloane, Dec 26 2017
Question: Is there a comment of the form "a prime number is in this sequence if and only if it is congruent to (list of appropriate values) mod n" for this sequence?
From Robert Israel, Nov 19 2017: (Start)
Prime p > 5 is in the sequence iff -10 is a quadratic residue mod p.
Thus p is either in the intersection of A002144 and A038879 or in neither of them.
Primes == 1, 2, 5, 7, 9, 11, 13, 19, 23, or 37 (mod 40). (End)
LINKS
EXAMPLE
7 is in the sequence because 2^2 + 10 = 14 is 2 times 7.
19 is in the sequence because 3^2 + 10 = 19.
MAPLE
select(isprime, [seq(seq(i*40+j, j = [1, 2, 5, 7, 9, 11, 13, 19, 23, 37]), i=0..40)]); # Robert Israel, Nov 19 2017
# Load the Maple program HH given in A296920. Then run HH(-10, 200); This produces A155488, A296925, A293859. - N. J. A. Sloane, Dec 26 2017
MATHEMATICA
Select[Prime@ Range@ 120, {} != FindInstance[# x == n^2 + 10 && n >= 0 && x > 0, {n, x}, Integers, 1] &] (* Giovanni Resta, Oct 19 2017 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
J. Lowell, Oct 17 2017
EXTENSIONS
More terms from Giovanni Resta, Oct 19 2017
STATUS
approved