OFFSET
0,4
LINKS
Robert Israel, Table of n, a(n) for n = 0..446
FORMULA
E.g.f.: Product_{k>0} exp(x^(4*k-3)) / exp(x^(4*k-2)).
n*(n+5)*(n+4)*(n+3)*(n+2)*(n+1)*a(n) + 2*(n+1)*(n+2)*(n+3)*(n+4)*(n+5)*a(n+1) + (n+5)*(n+4)*(n+3)*(8+3*n)*a(n+2) + (n+5)*(n+4)*(13+4*n)*a(n+3) + 3*(n+4)*(n+5)*a(n+4) + (9+2*n)*a(n+5) + a(n+6) = 0. - Robert Israel, May 05 2020
MAPLE
f:= gfun:-rectoproc(n*(n+5)*(n+4)*(n+3)*(n+2)*(n+1)*a(n) + 2*(n+1)*(n+2)*(n+3)*(n+4)*(n+5)*a(n+1) + (n+5)*(n+4)*(n+3)*(8+3*n)*a(n+2) + (n+5)*(n+4)*(13+4*n)*a(n+3) + 3*(n+4)*(n+5)*a(n+4) + (9+2*n)*a(n+5) + a(n+6),
a(0) = 1, a(1) = 1, a(2) = -1, a(3) = -5, a(4) = 1, a(5) = 161}, a(n), remember):
map(f, [$0..25]); # Robert Israel, May 05 2020
PROG
(PARI) N=66; x='x+O('x^N); Vec(serlaplace(exp(x/(1+x+x^2+x^3))))
(PARI) N=66; x='x+O('x^N); Vec(serlaplace(prod(k=1, N, exp(x^(4*k-3)-x^(4*k-2)))))
CROSSREFS
KEYWORD
sign
AUTHOR
Seiichi Manyama, Oct 12 2017
STATUS
approved