The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A111884 E.g.f.: exp(x/(1+x)). 23
 1, 1, -1, 1, 1, -19, 151, -1091, 7841, -56519, 396271, -2442439, 7701409, 145269541, -4833158329, 104056218421, -2002667085119, 37109187217649, -679877731030049, 12440309297451121, -227773259993414719, 4155839606711748061, -74724654677947488521, 1293162252850914402221 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,6 COMMENTS Row sums of triangle A111596. With different signs see A066668. LINKS Seiichi Manyama, Table of n, a(n) for n = 0..450 P. Barry, The Restricted Toda Chain, Exponential Riordan Arrays, and Hankel Transforms, J. Int. Seq. 13 (2010) # 10.8.4, example 4. P. Barry, Exponential Riordan Arrays and Permutation Enumeration, J. Int. Seq. 13 (2010) # 10.9.1, example 6. P. Barry, Riordan Arrays, Orthogonal Polynomials as Moments, and Hankel Transforms, J. Int. Seq. 14 (2011) # 11.2.2, example 20. P. Barry, Combinatorial Polynomials as Moments, Hankel Transforms, and Exponential Riordan Arrays, J. Int. Seq. 14 (2011)  11.6.7, example 10. A. Hennessy, P. Barry, Generalized Stirling Numbers, Exponential Riordan Arrays, and Orthogonal Polynomials, J. Int. Seq. 14 (2011) # 11.8.2 FORMULA E.g.f.: exp(x/(1+x)). From Sergei N. Gladkovskii, Jul 21 2012: (Start) Let E(x) be the e.g.f., then E(x) = 1/G(0) where G(k)= 1 - x/((1+x)*(2*k+1) - x*(1+x)*(2*k+1)/(x - (1+x)*(2*k+2)/G(k+1))); (continued fraction, 3rd kind, 3-step). E(x) = 1 + x/(G(0)-x) where G(k)= 1 + 2*x + (1+x)*k - x*(1+x)*(k+1)/G(k+1); (continued fraction, Euler's 1st kind, 1-step). E(x) = G(0) where G(k)= 1 + x/((1+x)*(2*k+1) - x*(1+x)*(2*k+1)/(x + 2*(1+x)*(k+1)/G(k+1))); (continued fraction, 3rd kind, 3-step). (End) E.g.f.: 1 + x*(E(0)-1)/(x+1) where E(k) = 1 + 1/(k+1)/(1+x)/(1-x/(x+1/E(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jan 27 2013 E.g.f.: E(0)/2, where E(k)= 1 + 1/(1 - x/(x + (k+1)*(1+x)/E(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 31 2013 a(n) = sum(k=0..n, (-1)^(n-k)*L(n,k)); L(n,k) the unsigned Lah numbers. - Peter Luschny, Oct 18 2014 a(n) = hypergeom([-n+1,-n],[],-1). - Peter Luschny, Apr 08 2015 a(n) +(2*n-3)*a(n-1) +(n-1)*(n-2)*a(n-2)=0. - R. J. Mathar, Jul 20 2017 MATHEMATICA nn=30; CoefficientList[Series[Exp[x/(1+x)], {x, 0, nn}], x] Range[0, nn]! (* Harvey P. Dale, Jul 21 2011 *) PROG (Sage) A111884 = lambda n: hypergeometric([-n+1, -n], [], -1) [Integer(A111884(n).n(100)) for n in (0..23)] # Peter Luschny, Sep 23 2014 CROSSREFS Unsigned row sums of A111596: A000262. Sequence in context: A125356 A293116 A066668 * A126514 A168025 A160431 Adjacent sequences:  A111881 A111882 A111883 * A111885 A111886 A111887 KEYWORD sign,easy AUTHOR Wolfdieter Lang, Aug 23 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 5 04:57 EDT 2022. Contains 355087 sequences. (Running on oeis4.)