OFFSET
0,8
LINKS
Alois P. Heinz, Rows n = 0..40, flattened
EXAMPLE
Triangle T(n,k) begins:
1;
0, 1;
0, 1, 1;
0, 2, 3, 1;
0, 2, 8, 4, 1;
0, 3, 20, 16, 5, 1;
0, 4, 47, 53, 25, 6, 1;
0, 5, 106, 173, 102, 36, 7, 1;
0, 6, 237, 532, 410, 172, 49, 8, 1;
...
MAPLE
h:= l-> (n-> add(i, i=l)!/mul(mul(1+l[i]-j+add(`if`(l[k]
<j, 0, 1), k=i+1..n), j=1..l[i]), i=1..n))(nops(l)):
g:= proc(n, i, l) option remember;
`if`(n=0, h(l), `if`(i<1, 0, `if`(i=1, h([l[], 1$n]),
g(n, i-1, l) +`if`(i>n, 0, g(n-i, i, [l[], i])))))
end:
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(b(n-i*j, i-1, k)*binomial(g(i, k, []), j), j=0..n/i)))
end:
T:= (n, k)-> b(n$2, k)-`if`(k=0, 0, b(n$2, k-1)):
seq(seq(T(n, k), k=0..n), n=0..14);
MATHEMATICA
h[l_] := Function[n, Total[l]!/Product[Product[1 + l[[i]] - j + Sum[If[ l[[k]]<j, 0, 1], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}]][ Length[l]];
g[n_, i_, l_] := g[n, i, l] = If[n == 0, h[l], If[i < 1, 0, If[i == 1, h[Join[l, Table[1, n]]], g[n, i - 1, l] + If[i > n, 0, g[n - i, i, Append[l, i]]]]]];
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i<1, 0, Sum[b[n - i*j, i-1, k]*Binomial[g[i, k, {}], j], {j, 0, n/i}]]];
T[n_, k_] := b[n, n, k] - If[k == 0, 0, b[n, n, k - 1]];
Table[T[n, k], {n, 0, 14}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 04 2018, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Sep 30 2017
STATUS
approved