login
A292987
Beatty sequence of the real root of x^5 - x^4 - x^2 - 1; complement of A292988.
1
1, 3, 4, 6, 7, 9, 10, 12, 14, 15, 17, 18, 20, 21, 23, 25, 26, 28, 29, 31, 32, 34, 36, 37, 39, 40, 42, 43, 45, 47, 48, 50, 51, 53, 54, 56, 58, 59, 61, 62, 64, 65, 67, 69, 70, 72, 73, 75, 76, 78, 80, 81, 83, 84, 86, 87, 89, 91, 92, 94, 95, 97, 98, 100, 102, 103, 105, 106, 108, 109, 111, 113, 114, 116, 117, 119, 120, 122, 124, 125, 127, 128, 130, 131, 133, 135, 136, 138, 139, 141, 142, 144, 146, 147, 149, 150, 152, 153, 155, 157, 158, 160, 161, 163, 164, 166, 168, 169, 171, 172, 174, 175, 177, 178
OFFSET
1,2
COMMENTS
First differs from A187342 at n = 37.
First differs from A140758 at n = 114.
FORMULA
a(n) = floor(n * r), where r = 1.57014731219605436291... (see A293506).
EXAMPLE
a(2) = floor(2 * 1.5701...) = floor(3.1402...) = 3.
MATHEMATICA
r = N[Root[#^5 - #^4 - #^2 - 1 &, 1], 64]; Array[ Floor[r #] &, 70] (* Robert G. Wilson v, Dec 10 2017 *)
PROG
(PARI) a(n) = floor(n*solve(x=1, 2, x^5 - x^4 - x^2 - 1))
CROSSREFS
Complement: A292988.
Sequence in context: A187342 A330143 A140758 * A352719 A187580 A094178
KEYWORD
nonn
AUTHOR
Iain Fox, Dec 08 2017
STATUS
approved