login
A292984
Bi-unitary superabundant numbers: numbers n such that bsigma(n)/n > bsigma(m)/m for all m < n, where bsigma is the sum of the bi-unitary divisors function (A188999).
6
1, 2, 6, 24, 96, 120, 480, 840, 3360, 7560, 30240, 83160, 332640, 1081080, 4324320, 17297280, 69189120, 73513440, 294053760, 1176215040, 1396755360, 5587021440
OFFSET
1,2
COMMENTS
Analogous to superabundant numbers (A004394) with bi-unitary sigma (A188999) instead of sigma (A000203).
The least bi-unitary k-abundant number (bsigma(m)/m > k*m) for k = 1, 2, ... is 1, 24, 480, 83160, 294053760. - Amiram Eldar, Dec 05 2018
MATHEMATICA
fun[p_, e_]:=If[OddQ[e], (p^(e+1)-1)/(p-1), (p^(e+1)-1)/(p-1)-p^(e/2)]; bsigma[n_] := If[n==1, 1, Times @@ (fun @@@ FactorInteger[n])]; a = {}; rmax = 0; Do[r = bsigma[n]/n; If[r > rmax, AppendTo[a, n]; rmax = r], {n, 1000}]; a
CROSSREFS
Sequence in context: A376810 A115220 A293185 * A072854 A147944 A147935
KEYWORD
nonn,more
AUTHOR
Amiram Eldar, Sep 27 2017
EXTENSIONS
a(14)-a(22) from Amiram Eldar, Dec 06 2018
STATUS
approved