login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A292671 Upper right triangle A(m,n) = least number of symbols required to fill a grid of size n X n row by row in the greedy way such that in no row or column or m X m square a symbol occurs more than once. 9
1, 2, 4, 4, 6, 9, 4, 6, 11, 16, 8, 7, 13, 18, 25, 8, 8, 13, 18, 27, 36, 8, 10, 13, 20, 29, 38, 49, 8, 10, 13, 20, 32, 38, 51, 64, 16, 13, 14, 22, 33, 40, 53, 66, 81, 16, 15, 14, 22, 33, 40, 56, 66, 83, 100, 16, 16, 15, 23, 33, 41, 57, 68, 85, 102 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Consider the symbols as positive integers. By the greedy way we mean to fill the grid row by row from left to right always with the least possible positive integer such that the three constraints (on rows, columns and rectangular blocks) are satisfied. In contrast to the sudoku case, the m X m rectangles have "floating" borders, so the constraint is actually equivalent to say that any element must be different from all neighbors in a Moore neighborhood of range m-1 (having up to (2m-1)^2 grid points). See A292673 for examples.

One can consider the infinite square array A(m,n) defined in the same way, but the lower triangular part of it is uninteresting: for m>n one has A(m,n) = n^2, i.e., the columns continue below the diagonal indefinitely with the same value, n^2.

LINKS

Table of n, a(n) for n=1..65.

Eric W. Weisstein, Moore Neighborhood, on MathWorld--A Wolfram Web Resource.

EXAMPLE

The infinite square array would look as follows: (but the sequence only lists the upper right triangle: 1; 2, 4; 4, 6, 9; 4, 6, 11, 16; ...):

   [1  2  4  4  8  8  8  8 16 ...]  m=1: A(1,n) = 2^ceil(log_2(n)) = A062383(n-1)

   [1\_4  6  6  7  8 10 10 13 ...]  m=2: A(2,n) = A292672(n)

   [1  4\_9 11 13 13 13 13 14 ...]  m=3: A(3,n) = A292673(n) : see here

   [1  4  9\16 18 18 20 20 22 ...]  m=4: A(4,n) = A292674(n) :  for examples

   [1  4  9 16\25 27 29 32 33 ...]  m=5: A(5,n) = A292675(n)

   [1  4  9 16 25\36 38 38 40 ...]  m=6: A(6,n) = A292676(n)

   [1  4  9 16 25 36\49 51 53 ...]  m=7: A(7,n) = A292677(n)

   [1  4  9 16 25 36 49\64 66 ...]  m=8: A(8,n) = A292678(n)

   [1  4  9 16 25 36 49 64\81 ...]  m=9: A(9,n) = A292679(n)

   [...   ...  ...  ...  ...  ...]

PROG

(PARI) A(m, n, g=matrix(n, n))={my(ok(g, k, i, j, m)=if(m, ok(g[i, ], k)&&ok(g[, j], k)&&ok(concat(Vec(g[max(1, i-m+1)..i, max(1, j-m+1)..min(#g, j+m-1)])), k), !setsearch(Set(g), k))); for(i=1, n, for(j=1, n, for(k=1, n^2, ok(g, k, i, j, m)&&(g[i, j]=k)&&break))); vecmax(g)} \\ without "vecmax" the program returns the full n X n board.

CROSSREFS

Cf. A292670, A292672, A292673, ..., A292679

Sequence in context: A298043 A325245 A241064 * A210948 A008133 A237828

Adjacent sequences:  A292668 A292669 A292670 * A292672 A292673 A292674

KEYWORD

nonn,tabl

AUTHOR

M. F. Hasler, Sep 20 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 18 16:27 EST 2020. Contains 331011 sequences. (Running on oeis4.)