|
|
A008133
|
|
a(n) = floor(n/3)*floor((n+1)/3).
|
|
3
|
|
|
0, 0, 0, 1, 1, 2, 4, 4, 6, 9, 9, 12, 16, 16, 20, 25, 25, 30, 36, 36, 42, 49, 49, 56, 64, 64, 72, 81, 81, 90, 100, 100, 110, 121, 121, 132, 144, 144, 156, 169, 169, 182, 196, 196, 210, 225, 225, 240, 256, 256, 272, 289, 289, 306, 324, 324, 342, 361, 361, 380, 400, 400, 420, 441, 441, 462, 484, 484, 506
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,6
|
|
COMMENTS
|
Oblong numbers and squares are subsequences: a(A016789(n))=A002378(n); a(A008585(n))=a(A016777(n))=A000290(n). - Reinhard Zumkeller, Oct 09 2011
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 0..10000
V. Baltic, Applications of the finite state automata for counting restricted permutations and variations, Yugoslav Journal of Operations Research, 22 (2012), Number 2, 183-198 ; DOI: 10.2298/YJOR120211023B. - From N. J. A. Sloane, Jan 02 2013
Index entries for linear recurrences with constant coefficients, signature (1,0,2,-2,0,-1,1)
|
|
FORMULA
|
Partial sums of A087509. a(n+1)=sum{j=0..n, sum{k=0..j, if (mod(jk, 3)=2, 1, 0) }}. - Paul Barry, Sep 14 2003
Empirical g.f.: -x^3*(x^2+1) / ((x-1)^3*(x^2+x+1)^2). - Colin Barker, Mar 31 2013
|
|
PROG
|
(MAGMA) [Floor(n/3)*Floor((n+1)/3): n in [0..60]]; // Vincenzo Librandi, Aug 20 2011
(Haskell)
a008133 n = a008133_list !! n
a008133_list = zipWith (*) (tail ts) ts where ts = map (`div` 3) [0..]
-- Reinhard Zumkeller, Oct 09 2011
(PARI) a(n) = floor(n/3)*floor((n+1)/3); /* Joerg Arndt, Mar 31 2013 */
|
|
CROSSREFS
|
Cf. A008217.
Sequence in context: A241064 A292671 A210948 * A237828 A022471 A224487
Adjacent sequences: A008130 A008131 A008132 * A008134 A008135 A008136
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
N. J. A. Sloane
|
|
STATUS
|
approved
|
|
|
|