The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A292077 a(n) = 0 if n=1; a(n) = 1-a(n-2) if n is odd; a(n) = 1-a(n/2) if n is even. 2
 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1 LINKS Robert Israel, Table of n, a(n) for n = 1..10000 Jean-Paul Allouche, Schrödinger Operators with Rudin-Shapiro Potentials are not Palindromic, Journal of Mathematical Physics, volume 38, number 4, 1997, pages 1843-1848.  And the author's copy.  Section IV paperfolding sequence z_n = a(n) for case i_m = m mod 2. Mark D. LaDue, Clusters of Integers with Equal Total Stopping Times in the 3x + 1 Problem, arXiv:1709.02979 [math.NT], 2017. Eric Weisstein's World of Mathematics, Collatz Problem Wikipedia, Collatz conjecture FORMULA From Robert Israel, Sep 12 2017: (Start) a(n) = (1 + (-1)^((A000265(n)+1)/2+A007814(n)))/2. G.f.: Sum_{k>=0} (z^(2*4^k)/(1-z^(8*4^k)) + z^(3*4^k)/(1-z^(4*4^k))). (End) MAPLE f:= proc(n) local k, m;   k:= padic:-ordp(n, 2);   m:= n/2^k;   (1 + (-1)^((m+1)/2+k))/2 end proc: map(f, [\$1..200]); # Robert Israel, Sep 12 2017 MATHEMATICA a[1] = 0; a[n_] := a[n] = 1 - If[OddQ[n], a[n-2], a[n/2]]; Array[a, 100] (* Jean-François Alcover, Dec 09 2017 *) PROG (PARI) a(n) = if (n==1, 0, if (n%2, 1 - a(n-2), 1 - a(n/2))); CROSSREFS Cf. A000265, A007814, A014682, A106665 (complement). Sequence in context: A254114 A105384 A288694 * A327256 A327177 A057212 Adjacent sequences:  A292074 A292075 A292076 * A292078 A292079 A292080 KEYWORD nonn,easy AUTHOR Michel Marcus, Sep 12 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 22 03:21 EDT 2020. Contains 337289 sequences. (Running on oeis4.)