This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A105384 Expansion of x/(1+x+x^2+x^3+x^4). 3
 0, 1, -1, 0, 0, 0, 1, -1, 0, 0, 0, 1, -1, 0, 0, 0, 1, -1, 0, 0, 0, 1, -1, 0, 0, 0, 1, -1, 0, 0, 0, 1, -1, 0, 0, 0, 1, -1, 0, 0, 0, 1, -1, 0, 0, 0, 1, -1, 0, 0, 0, 1, -1, 0, 0, 0, 1, -1, 0, 0, 0, 1, -1, 0, 0, 0, 1, -1, 0, 0, 0, 1, -1, 0, 0, 0, 1, -1, 0, 0, 0, 1, -1, 0, 0, 0, 1, -1, 0, 0, 0, 1, -1, 0, 0, 0, 1, -1, 0, 0, 0, 1, -1, 0, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Inverse binomial transform of A103311. A transform of the Fibonacci numbers: apply the Chebyshev transform (1/(1+x^2), x/(1+x^2)) followed by the binomial involution (1/(1-x),-x/(1-x)) followed by the inverse binomial transform (1/(1+x), x/(1+x)) (expressed as Riordan arrays) to the -F(n); equivalently, apply (1/(1+x^2),-x/(1+x^2)) to -F(n). Periodic {0,1,-1,0,0}. Essentially the same as A010891. - R. J. Mathar, Apr 07 2008 LINKS FORMULA Euler transform of length 5 sequence [ -1, 0, 0, 0, 1]. G.f.: x(1-x)/(1-x^5); a(n)=-sqrt(1/5+2sqrt(5)/25)cos(4*pi*n/5+pi/10)+sqrt(5)sin(4*pi*n/5+pi/10)/5+ sqrt(1/5-2sqrt(5)/25)cos(2*pi*n/5+3*pi/10)+sqrt(5)sin(2*pi*n/5+3*pi/10)/5 a(n)=-1/5*{[(n+2) mod 5]-2*[(n+3) mod 5]+[(n+4) mod 5]} with n>=0 - Paolo P. Lava, Nov 21 2006 a(n)=A010891(n-1). - R. J. Mathar, Apr 07 2008 CROSSREFS Sequence in context: A030301 A071981 A093692 * A057212 A023959 A076182 Adjacent sequences:  A105381 A105382 A105383 * A105385 A105386 A105387 KEYWORD easy,sign AUTHOR Paul Barry, Apr 02 2005 EXTENSIONS Corrected by N. J. A. Sloane, Nov 05 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics
Recent Additions | More pages | Superseeker | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .