login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A290993
p-INVERT of (1,1,1,1,1,...), where p(S) = 1 - S^6.
3
0, 0, 0, 0, 0, 1, 6, 21, 56, 126, 252, 463, 804, 1365, 2366, 4368, 8736, 18565, 40410, 87381, 184604, 379050, 758100, 1486675, 2884776, 5592405, 10919090, 21572460, 43144920, 87087001, 176565486, 357913941, 723002336, 1453179126, 2906358252, 5791193143
OFFSET
0,7
COMMENTS
Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A291000 for a guide to related sequences.
FORMULA
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) for n>5. Corrected by Colin Barker, Aug 24 2017
G.f.: x^5 / ((1 - 2*x)*(1 - x + x^2)*(1 - 3*x + 3*x^2)). - Colin Barker, Aug 24 2017
a(n) = A192080(n-5) for n > 5. - Georg Fischer, Oct 23 2018
G.f.: x^5/((1-x)^6 - x^6). - G. C. Greubel, Apr 11 2023
MAPLE
seq(coeff(series(x^5/((1-2*x)*(1-x+x^2)*(1-3*x+3*x^2)), x, n+1), x, n), n = 0 .. 35); # Muniru A Asiru, Oct 23 2018
MATHEMATICA
z = 60; s = x/(1 - x); p = 1 - s^6;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000012 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A290993 *)
PROG
(PARI) concat(vector(5), Vec(x^5 / ((1 - 2*x)*(1 - x + x^2)*(1 - 3*x + 3*x^2)) + O(x^50))) \\ Colin Barker, Aug 24 2017
(GAP) a:=[0, 0, 0, 0, 1];; for n in [6..35] do a[n]:=6*a[n-1]-15*a[n-2]+20*a[n-3]-15*a[n-4]+6*a[n-5]; od; Concatenation([0], a); # Muniru A Asiru, Oct 23 2018
(Magma) R<x>:=PowerSeriesRing(Integers(), 60); [0, 0, 0, 0, 0] cat Coefficients(R!( x^5/((1-x)^6 - x^6) )); // G. C. Greubel, Apr 11 2023
(SageMath)
def A290993_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( x^5/((1-x)^6 - x^6) ).list()
A290993_list(60) # G. C. Greubel, Apr 11 2023
CROSSREFS
Sequences of the form x^(m-1)/((1-x)^m - x^m): A000079 (m=1), A131577 (m=2), A024495 (m=3), A000749 (m=4), A139761 (m=5), this sequence (m=6), A290994 (m=7), A290995 (m=8).
Sequence in context: A264926 A006090 A192080 * A373937 A275936 A375165
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Aug 21 2017
STATUS
approved