login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A290904 p-INVERT of the positive integers, where p(S) = 1 - 2*S^2. 3
0, 2, 8, 24, 72, 222, 688, 2128, 6576, 20322, 62808, 194120, 599960, 1854270, 5730912, 17712288, 54742624, 169190722, 522910632, 1616137848, 4994929128, 15437616926, 47712391952, 147462678768, 455756685840, 1408587979170, 4353463496440, 13455066133672 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).

See A290890 for a guide to related sequences.

LINKS

Clark Kimberling, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (4, -4, 4, -1)

FORMULA

G.f.: (2 x)/(1 - 4 x + 4 x^2 - 4 x^3 + x^4).

a(n) = 4*a(n-1) - 4*a(n-2) + 4*a(n-3) - a(n-4).

a(n) = 2*A290905(n) for n >= 0.

MATHEMATICA

z = 60; s = x/(1 - x)^2; p = 1 - 2 s^2;

Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000027 *)

u = Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A290903 *)

u/2 (* A290905 *)

CROSSREFS

Cf. A000027, A290890, A290905.

Sequence in context: A050242 A045697 A131569 * A231200 A066973 A130495

Adjacent sequences:  A290901 A290902 A290903 * A290905 A290906 A290907

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling, Aug 17 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 24 20:53 EDT 2019. Contains 323534 sequences. (Running on oeis4.)