The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A290906 p-INVERT of the positive integers, where p(S) = 1 - 3*S^2. 3
 0, 3, 12, 39, 132, 456, 1572, 5409, 18612, 64053, 220440, 758640, 2610840, 8985147, 30922188, 106418031, 366235308, 1260390744, 4337606988, 14927778921, 51373622388, 176801189997, 608457401520, 2093992746720, 7206429919920, 24800769855603, 85351303248012 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453). See A290890 for a guide to related sequences. LINKS Index entries for linear recurrences with constant coefficients, signature (4, -3, 4, -1) FORMULA G.f.: (3 x)/(1 - 4 x + 3 x^2 - 4 x^3 + x^4). a(n) = 4*a(n-1) - 3*a(n-2) + 4*a(n-3) - a(n-4). a(n) = 3*A290907(n) for n >= 0. MATHEMATICA z = 60; s = x/(1 - x)^2; p = 1 - 3 s^2; Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000027 *) u = Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A290906 *) u/3 (* A290907 *) CROSSREFS Cf. A000027, A290890, A290907. Sequence in context: A240806 A242587 A330169 * A110153 A183366 A122994 Adjacent sequences:  A290903 A290904 A290905 * A290907 A290908 A290909 KEYWORD nonn,easy AUTHOR Clark Kimberling, Aug 17 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 8 03:01 EDT 2020. Contains 333312 sequences. (Running on oeis4.)