OFFSET
1,1
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..100
Andrew Howroyd, Irredundant Sets in Rook Graphs
Eric Weisstein's World of Mathematics, Irredundant Set
Eric Weisstein's World of Mathematics, Rook Graph
FORMULA
a(n) = 2*n^n - n! + Sum_{k=0..n-1} Sum_{r=2*k..n-1} binomial(n,k) * binomial(n,r) * k! * A008299(r,k) * c(n-k,n-r) where c(m,n) = Sum_{i=0..m-1} binomial(n,i) * (n^i - n!*stirling2(i, n)). - Andrew Howroyd, Aug 11 2017
MATHEMATICA
s[n_, k_]:=Sum[(-1)^i*Binomial[n, i] StirlingS2[n - i, k - i], {i, 0, Min[n, k]}];
c[m_, n_, x_]:=Sum[Binomial[m, i] (n^i - n!*StirlingS2[i, n])*x^i, {i, 0, m - 1}];
p[m_, n_, x_]:=Sum[Sum[Binomial[m, k] Binomial[n, r]* k!*s[r, k]*x^r*c[m - k, n - r, x], {r, 2k, n - 1}], {k, 0, m - 1}];
Table[2*n^n - n! + p[n, n, 1], {n, 30}]
(* Indranil Ghosh, Aug 12 2017, after PARI code *)
PROG
s(n, k)=sum(i=0, min(n, k), (-1)^i * binomial(n, i) * stirling(n-i, k-i, 2) );
c(m, n, x)=sum(i=0, m-1, binomial(m, i) * (n^i - n!*stirling(i, n, 2))*x^i);
p(m, n, x)={sum(k=0, m-1, sum(r=2*k, n-1, binomial(m, k) * binomial(n, r) * k! * s(r, k) * x^r * c(m-k, n-r, x) ))}
a(n) = 2*n^n - n! + p(n, n, 1); \\ Andrew Howroyd, Aug 11 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Eric W. Weisstein, Aug 07 2017
EXTENSIONS
a(4) corrected and a(5) from Andrew Howroyd, Aug 07 2017
Terms a(6) and beyond from Andrew Howroyd, Aug 11 2017
STATUS
approved