login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A290004
Wiener index of the n-Hanoi graph.
2
3, 72, 1419, 26580, 487839, 8867088, 160391235, 2894149932, 52158948999, 939440707560, 16915155908523, 304519845578052, 5481780715831215, 98675865000853056, 1776199882077971859, 31971906699808312284, 575497100061532320855, 10358972816581956751128
OFFSET
1,1
COMMENTS
Sequence gives 1/2 of the total number of moves summed over all starting and finishing positions in the tower of Hanoi puzzle with n disks. For just the total number of moves from all starting positions to the standard finish position see A060589.
LINKS
T. Chan, A statistical analysis of the towers of Hanoi problem, Internat. J. Comput. Math. 28: 57-65.
A. Hinz, The Tower of Hanoi, L'Enseignement Mathématique, 35: 289-321.
Eric Weisstein's World of Mathematics, Hanoi Graph
Eric Weisstein's World of Mathematics, Wiener Index
Wikipedia, Tower of Hanoi
FORMULA
a(n) = 35*a(n-1) - 395*a(n-2) + 1761*a(n-3) - 2916*a(n-4) + 972*a(n-5).
G.f.: 3*x*(1 - 11*x + 28*x^2 + 24*x^3)/((1 - 3*x)*(1 - 9*x)*(1 - 18*x)*(1 - 5*x + 2*x^2)). [Corrected by Georg Fischer, May 19 2019]
MATHEMATICA
(* Start from Eric W. Weisstein, Sep 07 2017 *)
Table[3/1003 2^-n ((34 - 3 Sqrt[17]) (5 - Sqrt[17])^n + (5 + Sqrt[17])^n (34 + 3 Sqrt[17])) - 3^(n + 1)/10 + 9^n (233/885 2^n - 1/6), {n, 10}]
LinearRecurrence[{35, -395, 1761, -2916, 972}, {3, 72, 1419, 26580, 487839}, 20]
CoefficientList[Series[(3 (1 - 11 x + 28 x^2 + 24 x^3))/((1 - 3 x) (1 - 9 x) (1 - 18 x) (1 - 5 x + 2 x^2)), {x, 0, 20}], x]
(* End *)
PROG
(PARI) Vec(3*(1 - 11*x + 28*x^2 + 24*x^3)/((1 - 3*x)*(1 - 9*x)*(1 - 18*x)*(1 - 5*x + 2*x^2)) + O(x^20))
CROSSREFS
Sequence in context: A321530 A374898 A062074 * A332188 A071645 A322189
KEYWORD
nonn,easy
AUTHOR
Andrew Howroyd, Sep 03 2017
STATUS
approved