The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A290003 G.f.: A(x) = Sum_{n=-oo..+oo} (x - x^n)^n. 2
 1, -1, 1, -2, 3, -3, 1, 1, 1, -7, 10, -6, 1, 0, 1, -8, 23, -25, 1, 17, 1, -32, 36, -12, 1, -21, 26, -14, 55, -92, 1, 93, 1, -129, 78, -18, 108, -121, 1, -20, 105, -49, 1, 19, 1, -298, 430, -24, 1, -423, 50, 424, 171, -469, 1, -217, 661, -450, 210, -30, 1, -203, 1, -32, 591, -897, 1288, -881, 1, -987, 300, 2407, 1, -2804, 1, -38, 2626, -1350, 1387, -2380, 1, 837, 487, -42, 1, -2855, 3741, -44, 465, -3301, 1, -326, 4291, -2324, 528, -48, 5815, -12713, 1, 6957, 1422, 4074, 1, -10371, 1, -8451, 20322, -54, 1, -15589, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Compare g.f. to: Sum_{n=-oo..+oo} (x - x^(n+1))^n  =  0. LINKS Paul D. Hanna, Table of n, a(n) for n = 0..2050 FORMULA G.f.: 1 + Sum_{n>=1} x^n*(1 - x^(n-1))^n + (-x)^(n^2)/(1 - x^(n+1))^n. a(p+1) = 1 for primes p > 3 (conjecture). EXAMPLE G.f.: A(x) = 1 - x + x^2 - 2*x^3 + 3*x^4 - 3*x^5 + x^6 + x^7 + x^8 - 7*x^9 + 10*x^10 - 6*x^11 + x^12 + x^14 - 8*x^15 + 23*x^16 - 25*x^17 + x^18 + 17*x^19 + x^20 - 32*x^21 + 36*x^22 - 12*x^23 + x^24 - 21*x^25 + 26*x^26 - 14*x^27 + 55*x^28 - 92*x^29 + x^30 +... where A(x) = 1 + P(x) + N(x) with P(x) = (x-x) + (x-x^2)^2 + (x-x^3)^3 + (x-x^4)^4 + (x-x^5)^5 + (x-x^6)^6 + (x-x^7)^7 +...+ (x-x^n)^n +... N(x) = -x/(1 - x^2) + x^4/(1-x^3)^2 - x^9/(1-x^4)^3 + x^16/(1-x^5)^4 - x^25/(1-x^6)^5 +...+ (-x)^(n^2)/(1-x^(n+1))^n +... Explicitly, P(x) = x^2 - x^3 + 2*x^4 - 2*x^5 + x^6 + x^8 - 5*x^9 + 7*x^10 - 5*x^11 + x^12 + x^14 - 7*x^15 + 17*x^16 - 18*x^17 + x^18 + 12*x^19 + x^20 - 25*x^21 + 29*x^22 - 11*x^23 + x^24 - 12*x^25 + 16*x^26 - 13*x^27 + 46*x^28 - 70*x^29 + x^30 +... N(x) = -x - x^3 + x^4 - x^5 + x^7 - 2*x^9 + 3*x^10 - x^11 - x^15 + 6*x^16 - 7*x^17 + 5*x^19 - 7*x^21 + 7*x^22 - x^23 - 9*x^25 + 10*x^26 - x^27 + 9*x^28 - 22*x^29 +... PROG (PARI) {a(n) = local(A=1); A = sum(k=-n, n, (x - x^k)^k +x*O(x^n)); polcoeff(A, n)} for(n=0, 100, print1(a(n), ", ")) (PARI) {a(n) = local(A=1); A = 1 + sum(k=1, n, x^k*(1 - x^(k-1))^k + (-x)^(k^2)/(1 - x^(k+1))^k +x*O(x^n)); polcoeff(A, n)} for(n=0, 500, print1(a(n), ", ")) CROSSREFS Cf. A260116, A260147. Sequence in context: A318741 A171872 A005135 * A139460 A105244 A257451 Adjacent sequences:  A290000 A290001 A290002 * A290004 A290005 A290006 KEYWORD sign AUTHOR Paul D. Hanna, Sep 03 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 12 18:58 EDT 2021. Contains 342932 sequences. (Running on oeis4.)