login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A289121
a(n) = (8 - 2*n + 11*n^2 - 6*n^3 + n^4)/4.
0
3, 4, 5, 12, 37, 98, 219, 430, 767, 1272, 1993, 2984, 4305, 6022, 8207, 10938, 14299, 18380, 23277, 29092, 35933, 43914, 53155, 63782, 75927, 89728, 105329, 122880, 142537, 164462, 188823, 215794, 245555, 278292, 314197, 353468, 396309, 442930, 493547, 548382, 607663
OFFSET
1,1
COMMENTS
For n > 1, number of maximal irredundant sets in the n-crown graph.
LINKS
Eric Weisstein's World of Mathematics, Crown Graph
Eric Weisstein's World of Mathematics, Maximal Irredundant Set
FORMULA
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
G.f.: x*(3 - 11*x + 15*x^2 - 3*x^3 + 2*x^4)/(1 - x)^5.
E.g.f.: (1/4)*((8 + 4*x + x^4)*exp(x) - 8). - G. C. Greubel, Aug 17 2017
MATHEMATICA
Table[(8 - 2 n + 11 n^2 - 6 n^3 + n^4)/4, {n, 20}]
LinearRecurrence[{5, -10, 10, -5, 1}, {3, 4, 5, 12, 37}, 20]
CoefficientList[Series[(-3 + 11 x - 15 x^2 + 3 x^3 - 2 x^4)/(-1 + x)^5, {x, 0, 20}], x]
PROG
(PARI) x='x+O('x^50); Vec(x*(3 - 11*x + 15*x^2 - 3*x^3 + 2*x^4)/(1 - x)^5) \\ G. C. Greubel, Aug 17 2017
(Magma) [(8 - 2*n + 11*n^2 - 6*n^3 + n^4)/4 : n in [1..50]]; // Wesley Ivan Hurt, Dec 02 2021
CROSSREFS
Sequence in context: A049929 A262192 A280308 * A060738 A090651 A242497
KEYWORD
nonn,easy
AUTHOR
Eric W. Weisstein, Aug 17 2017
STATUS
approved