login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A049929 a(n) = a(1) + a(2) + ... + a(n-1) - a(m) for n >= 4, where m = 2^(p+1) + 2 - n and p is the unique integer such that of  2^p < n-1 <= 2^(p+1), starting with a(1) = 1, a(2) = 3, and a(3) = 4. 1
1, 3, 4, 5, 12, 20, 41, 83, 168, 254, 550, 1121, 2250, 4507, 9015, 18031, 36064, 54098, 117212, 238932, 480121, 961371, 1923313, 3846922, 7693930, 15387945, 30775932, 61551885, 123103778, 246207563, 492415127, 984830255, 1969660512 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Empirical: Lim_{n->infinity} a(n+1)/a(n) = 2. - Iain Fox, Dec 05 2017

LINKS

Iain Fox, Table of n, a(n) for n = 1..3325

Iain Fox, Table of n, a(n) for n = 1..8000

FORMULA

a(n) = (Sum_{i=1..n-1} a(i)) - a(2^ceiling(log_2(n-1)) + 2 - n) for n > 3. - Iain Fox, Dec 06 2017

For n > 3, a(n) is the sum of all previous terms except a(A080079(n-2)). - Iain Fox, Dec 13 2017

EXAMPLE

For n = 4, 2^p < 3 <= 2^(p+1), so p = 1, m = 2^2 + 2 - 4 = 2, and a(n) = a(1) + a(2) + a(3) - a(2) = 1 + 3 + 4 - 3 = 5.

For n = 6, 2^p < 5 <= 2^(p+1), so p = 2, m = 2^3 + 2 - 6 = 4, and a(n) = a(1) + a(2) + a(3) + a(4) + a(5) - a(4) = 1 + 3 + 4 + 5 + 12 - 5 = 20.

MATHEMATICA

Fold[Append[#1, Total@ #1 - #1[[2^Ceiling@ Log2@ #2 + 1 - #2]] ] &, {1, 3, 4}, Range[3, 32]] (* Michael De Vlieger, Dec 06 2017 *)

PROG

(PARI) first(n)= my(res = vector(n), s = 8); res[1]=1; res[2]=3; res[3]=4; for(x=4, n, res[x] = s - res[2*2^logint(x-2, 2)+2-x]; s += res[x]); res; \\ Iain Fox, Dec 05 2017

CROSSREFS

Cf. A080079, A049933, A049937, A049945.

Sequence in context: A236244 A141290 A010752 * A262192 A280308 A289121

Adjacent sequences:  A049926 A049927 A049928 * A049930 A049931 A049932

KEYWORD

nonn

AUTHOR

Clark Kimberling

EXTENSIONS

Name edited by Petros Hadjicostas, Nov 06 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 14 17:32 EST 2019. Contains 329979 sequences. (Running on oeis4.)