login
A288959
a(n) = n^2*(n^2 - 1)^2/2.
0
0, 18, 288, 1800, 7200, 22050, 56448, 127008, 259200, 490050, 871200, 1472328, 2384928, 3726450, 5644800, 8323200, 11985408, 16901298, 23392800, 31840200, 42688800, 56455938, 73738368, 95220000, 121680000, 154001250, 193179168, 240330888, 296704800, 363690450
OFFSET
1,2
COMMENTS
Except for n = 2, gives the detour index of the n X n rook and rook complement graph.
Also the detour index of the n X n king and n X n queen graphs. - Eric W. Weisstein, Dec 16 2017
LINKS
Eric Weisstein's World of Mathematics, Detour Index
Eric Weisstein's World of Mathematics, King Graph
Eric Weisstein's World of Mathematics, Queen Graph
Eric Weisstein's World of Mathematics, Rook Complement Graph
Eric Weisstein's World of Mathematics, Rook Graph
FORMULA
a(n) = n^2*(n^2 - 1)^2/2.
a(n) = 7*a(n-1)-21*a(n-2)+35*a(n-3)-35*a(n-4)+21*a(n-5)-7*a(n-6)+a(n-7).
G.f.: (-18*x^2*(1+x)*(1+8*x+x^2))/(-1+x)^7.
a(n) = 18 *A001249(n-2). - R. J. Mathar, Dec 17 2017
MATHEMATICA
Table[n^2 (n^2 - 1)^2/2, {n, 20}]
LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {0, 18, 288, 1800, 7200, 22050, 56448}, 20]
CoefficientList[Series[-((18 x (1 + x) (1 + 8 x + x^2))/(-1 + x)^7), {x, 0, 20}], x]
18 Binomial[Range[0, 20] + 2, 3]^2 (* Eric W. Weisstein, Dec 20 2017 *)
PROG
(PARI) a(n) = n^2*(n^2-1)^2/2; \\ Altug Alkan, Dec 20 2017
CROSSREFS
Sequence in context: A368526 A035119 A230235 * A294327 A286725 A226998
KEYWORD
nonn,easy
AUTHOR
Eric W. Weisstein, Jun 20 2017
STATUS
approved