login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A288958
Number of cliques in the n X n rook graph.
0
2, 9, 34, 105, 286, 721, 1730, 4017, 9118, 20361, 44914, 98137, 212798, 458529, 982786, 2096865, 4456126, 9436825, 19922546, 41942601, 88079902, 184548849, 385875394, 805305745, 1677720926, 3489660201, 7247756530, 15032384697, 31138511998, 64424508481
OFFSET
1,1
COMMENTS
Also the number of independent vertex sets in the n X n rook complement graph. - Eric W. Weisstein, Sep 11 2017
LINKS
Eric Weisstein's World of Mathematics, Clique
Eric Weisstein's World of Mathematics, Independent Vertex Set
Eric Weisstein's World of Mathematics, Rook Complement Graph
Eric Weisstein's World of Mathematics, Rook Graph
FORMULA
a(n) = 1 + 2*n*(2^n - 1) - n^2.
a(n) = 7*a(n-1) - 19*a(n-2) + 25*a(n-3) - 16*a(n-4) + 4*a(n-5).
G.f.: x*(2 - 5*x + 9*x^2 - 12*x^3 + 4*x^4)/((1 - x)^3*(1 - 2*x)^2).
MATHEMATICA
LinearRecurrence[{7, -19, 25, -16, 4}, {2, 9, 34, 105, 286}, 20]
Table[1 + 2 n (2^n - 1) - n^2, {n, 20}]
CoefficientList[Series[(2 - 5 x + 9 x^2 - 12 x^3 + 4 x^4)/((1 - x)^3 (1 - 2 x)^2), {x, 0, 20}], x]
CROSSREFS
Sequence in context: A263685 A334443 A301868 * A212348 A000524 A289614
KEYWORD
nonn,easy
AUTHOR
Eric W. Weisstein, Jun 20 2017
STATUS
approved