login
A284411
Least prime p such that more than half of all integers are divisible by n distinct primes not greater than p.
7
3, 37, 42719, 5737850066077
OFFSET
1,1
COMMENTS
The proportion of all integers that satisfy the divisibility criterion for p=prime(m) is determined using the proportion that satisfy it over any interval of primorial(m)=A002110(m) integers.
a(4) is from De Koninck, 2009; calculation credited to D Grégoire.
REFERENCES
J.-M. De Koninck, Those Fascinating Numbers, American Mathematical Society, 2009.
LINKS
J. de Koninck and G. Tenenbaum, Sur la loi de répartition du k-ième facteur premier d'un entier, Mathematical Proceedings of the Cambridge Philosophical Society, 133(2), 191-204. doi:10.1017/S0305004102005972
Gérald Tenenbaum, Some of Erdos' unconventional problems in number theory, thirty-four years later. Erdos Centennial, Janos Bolyai Math. Soc., 2013, 651-681. HAL Id: hal-01281530
FORMULA
a(n) is least p=prime(m) such that 2*Sum_{k=0..n-1} A096294(m,k) < A002110(m).
EXAMPLE
Exactly half of the integers are divisible by 2, so a(1)>2. Two-thirds of all integers are divisible by 2 or 3, so a(1) = 3.
CROSSREFS
KEYWORD
nonn,more,hard
AUTHOR
Peter Munn, Mar 26 2017
EXTENSIONS
Definition edited by N. J. A. Sloane, Apr 01 2017
STATUS
approved