OFFSET
1,1
COMMENTS
The values of k such that k^5 + k^2 + 1 is prime are 1, 2, 8, 20, 27, 35, 42, 48, 54, 77, 81, 83, 101, 105, 107, 108, 111, 119, 128, 131. Little is known about primality in quintic forms.
LINKS
Harvey P. Dale, Table of n, a(n) for n = 1..2000
EXAMPLE
a(1) = 3 = 1^5 + 1^2 + 1.
a(2) = 37 = 2^5 + 2^2 + 1.
a(3) = 132833 = 8^5 + 8^2 + 1.
a(4) = 3200401 = 20^5 + 20^2 + 1.
MATHEMATICA
Select[Table[k^5+k^2+1, {k, 150}], PrimeQ] (* Harvey P. Dale, Oct 29 2020 *)
PROG
(Magma) [a: n in [0..160] | IsPrime(a) where a is n^5+n^2+1 ]; // Vincenzo Librandi, Dec 22 2010
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Jul 21 2006
STATUS
approved