login
A283835
Number of length-n binary vectors beginning with 0, ending with 1, and avoiding 5 consecutive 0's and 5 consecutive 1's.
2
1, 0, 1, 2, 4, 8, 14, 28, 54, 104, 201, 386, 745, 1436, 2768, 5336, 10284, 19824, 38212, 73656, 141977, 273668, 527513, 1016814, 1959972, 3777968, 7282266, 14037020, 27057226, 52154480, 100530993, 193779718, 373522417, 719987608, 1387820736, 2675110480
OFFSET
0,4
LINKS
Stefano Bilotta, Variable-length Non-overlapping Codes, arXiv preprint arXiv:1605.03785 [cs.IT], 2016 [See Table 2].
FORMULA
G.f.: -1/((x^4+x^3+x^2+x+1)*(x^4+x^3+x^2+x-1)). - Alois P. Heinz, Mar 25 2017
MATHEMATICA
CoefficientList[Series[-1/((x^4 + x^3 + x^2 + x + 1)*(x^4 + x^3 + x^2 + x - 1)), {x, 0, 50}], x] (* Indranil Ghosh, Mar 26 2017 *)
PROG
(PARI) Vec(-1/((x^4 + x^3 + x^2 + x + 1)*(x^4 + x^3 + x^2 + x - 1)) +O(x^50)) \\ Indranil Ghosh, Mar 26 2017
CROSSREFS
Sequence in context: A215978 A018086 A004651 * A244933 A118560 A187813
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Mar 25 2017
EXTENSIONS
More terms from Alois P. Heinz, Mar 25 2017
STATUS
approved