login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A283394
a(n) = 3*n*(3*n + 7)/2 + 4.
5
4, 19, 43, 76, 118, 169, 229, 298, 376, 463, 559, 664, 778, 901, 1033, 1174, 1324, 1483, 1651, 1828, 2014, 2209, 2413, 2626, 2848, 3079, 3319, 3568, 3826, 4093, 4369, 4654, 4948, 5251, 5563, 5884, 6214, 6553, 6901, 7258, 7624, 7999, 8383, 8776, 9178, 9589, 10009
OFFSET
0,1
COMMENTS
Sum_{k = 0..n} (3*k + r)^3 is divisible by 3*n*(3*n + 2*r + 3)/2 + r^2: the sequence corresponds to the case r = 2 of this formula (other cases are listed in Crossrefs section).
Also, Sum_{k = 0..n} (3*k + 2)^3 / a(n) gives 2, 7, 15, 26, 40, 57, 77, 100, 126, 155, 187, 222, ... (A005449).
a(n) is even if n belongs to A014601. No term is divisible by 3, 5, 7 and 11.
LINKS
Nickolas Arustamyan, Christopher Cox, Erik Lundberg, Sean Perry, and Zvi Rosen, On the Number of Equilibria Balancing Newtonian Point Masses with a Central Force, arXiv:2106.11416 [math-ph], 2021.
FORMULA
O.g.f.: (4 + 7*x - 2*x^2)/(1 - x)^3.
E.g.f.: (8 + 30*x + 9*x^2)*exp(x)/2.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = A081271(-n-2).
a(n) = 3*A095794(n+1) + 1.
a(n) = A034856(3*n+2) = A101881(6*n+2) = A165157(6*n+3) = A186349(6*n+3).
The inverse binomial transform yields 4, 15, 9, 0 (0 continued), therefore:
a(n) = 4*binomial(n,0) + 15*binomial(n,1) + 9*binomial(n,2).
MATHEMATICA
Table[3 n (3 n + 7)/2 + 4, {n, 0, 50}]
LinearRecurrence[{3, -3, 1}, {4, 19, 43}, 50] (* Harvey P. Dale, Mar 02 2019 *)
PROG
(Python) [3*n*(3*n+7)/2+4 for n in range(50)]
(Sage) [3*n*(3*n+7)/2+4 for n in range(50)]
(Maxima) makelist(3*n*(3*n+7)/2+4, n, 0, 50);
(Magma) [3*n*(3*n+7)/2+4: n in [0..50]];
(PARI) a(n) = 3*n*(3*n + 7)/2 + 4; \\ Indranil Ghosh, Mar 24 2017
CROSSREFS
Sequences with formula 3*n*(3*n + 2*r + 3)/2 + r^2: A038764 (r=-1), A027468 (r=0), A081271 (r=1), this sequence (r=2), A027468 (r=3; offset: -1), A080855 (r=4; offset: -2).
Sequence in context: A031291 A210374 A352116 * A134538 A354171 A338711
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, Mar 23 2017
STATUS
approved