OFFSET
0,1
COMMENTS
Sum_{k = 0..n} (3*k + r)^3 is divisible by 3*n*(3*n + 2*r + 3)/2 + r^2: the sequence corresponds to the case r = 2 of this formula (other cases are listed in Crossrefs section).
Also, Sum_{k = 0..n} (3*k + 2)^3 / a(n) gives 2, 7, 15, 26, 40, 57, 77, 100, 126, 155, 187, 222, ... (A005449).
a(n) is even if n belongs to A014601. No term is divisible by 3, 5, 7 and 11.
LINKS
Bruno Berselli, Table of n, a(n) for n = 0..1000
Nickolas Arustamyan, Christopher Cox, Erik Lundberg, Sean Perry, and Zvi Rosen, On the Number of Equilibria Balancing Newtonian Point Masses with a Central Force, arXiv:2106.11416 [math-ph], 2021.
Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
FORMULA
MATHEMATICA
Table[3 n (3 n + 7)/2 + 4, {n, 0, 50}]
LinearRecurrence[{3, -3, 1}, {4, 19, 43}, 50] (* Harvey P. Dale, Mar 02 2019 *)
PROG
(Python) [3*n*(3*n+7)/2+4 for n in range(50)]
(Sage) [3*n*(3*n+7)/2+4 for n in range(50)]
(Maxima) makelist(3*n*(3*n+7)/2+4, n, 0, 50);
(Magma) [3*n*(3*n+7)/2+4: n in [0..50]];
(PARI) a(n) = 3*n*(3*n + 7)/2 + 4; \\ Indranil Ghosh, Mar 24 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, Mar 23 2017
STATUS
approved