login
A283304
List points (x,y) having integer coordinates with x >= y >= 0, sorted first by x^2+y^2 and in case of a tie, by x-coordinate. Sequence gives y-coordinates.
6
0, 0, 1, 0, 1, 2, 0, 1, 2, 0, 1, 3, 2, 3, 0, 1, 2, 4, 3, 0, 1, 2, 4, 3, 0, 5, 1, 4, 2, 3, 5, 0, 4, 1, 2, 6, 3, 5, 4, 0, 1, 6, 2, 5, 3, 4, 7, 6, 0, 1, 2, 5, 3, 7, 4, 6, 0, 1, 5, 2, 8, 7, 3, 6, 4, 0, 8, 1, 5, 2, 7, 3, 6, 4, 9, 8, 5, 0, 7, 1, 2, 3, 6, 9, 8, 4, 7, 5, 0, 1, 10, 2, 9, 6, 3, 8, 4, 7, 10, 5
OFFSET
1,6
LINKS
EXAMPLE
The first few points (listing [x^2+y^2,x,y]) are:
[0, 0, 0], [1, 1, 0], [2, 1, 1], [4, 2, 0], [5, 2, 1], [8, 2, 2], [9, 3, 0], [10, 3, 1], [13, 3, 2], [16, 4, 0], [17, 4, 1], [18, 3, 3], [20, 4, 2], [25, 4, 3], [25, 5, 0], [26, 5, 1], [29, 5, 2], [32, 4, 4], [34, 5, 3], [36, 6, 0], [37, 6, 1], [40, 6, 2], [41, 5, 4], [45, 6, 3], [49, 7, 0], ...
MAPLE
L:=[];
M:=30;
for i from 0 to M do
for j from 0 to i do
L:=[op(L), [i^2+j^2, i, j]]; od: od:
t3:= sort(L, proc(a, b) evalb(a[1]<=b[1]); end);
t3x:=[seq(t3[i][2], i=1..100)]; # A283303
t3y:=[seq(t3[i][3], i=1..100)]; # A283304
MATHEMATICA
nt = 105; (* number of terms to produce *)
S[m_] := S[m] = Table[{x, y}, {y, 0, m}, {x, y, m}] // Flatten[#, 1]& // SortBy[#, {#.#&, #[[1]]&}]& // #[[All, 2]]& // PadRight[#, nt]&
S[m = 2];
S[m = 2 m];
While[S[m] =!= S[m/2], m = 2 m];
S[m] (* Jean-François Alcover, Mar 05 2023 *)
CROSSREFS
For the x coordinates see A283303.
See also A283305-A283308.
Sequence in context: A270655 A229140 A280317 * A058685 A351637 A029300
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Mar 04 2017, following a suggestion from Ahmet Arduç.
STATUS
approved