login
A282854
34-gonal numbers: a(n) = n*(32*n-30)/2.
0
0, 1, 34, 99, 196, 325, 486, 679, 904, 1161, 1450, 1771, 2124, 2509, 2926, 3375, 3856, 4369, 4914, 5491, 6100, 6741, 7414, 8119, 8856, 9625, 10426, 11259, 12124, 13021, 13950, 14911, 15904, 16929, 17986, 19075, 20196, 21349, 22534, 23751
OFFSET
0,3
FORMULA
From Nikolaos Pantelidis, Feb 09 2023 : (Start)
G.f.: x*(1 + 31*x)/(1 - x)^3.
E.g.f.: exp(x)*(x + 16*x^2). (End)
MATHEMATICA
Table[n(32n-30)/2, {n, 50}]
PolygonalNumber[34, Range[0, 40]] (* or *) LinearRecurrence[{3, -3, 1}, {0, 1, 34}, 40] (* The first program requires Mathematica version 10 or later *) (* Harvey P. Dale, Jun 26 2018 *)
PROG
(PARI) a(n)=n*(16*n-15) \\ Charles R Greathouse IV, Feb 27 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Daniel Mohebiravesh, Feb 23 2017
STATUS
approved