OFFSET
0,2
COMMENTS
LINKS
FORMULA
O.g.f.: 1/(1 - 22*x + 81*x^2).
a(n) = 9^n*S(n, 22/9) with Chebyshev's S-polynomials (see A049310).
a(n) = 22*a(n-1) - 81*a(n-2), n >= 1, a(-1) = 0 and a(0) = 1.
a(n) = 9^n*(ap^(n+1) - am^(n+1))/(ap - am)), n >= 1, with ap:= (11 + 2*sqrt(10))/9 and am = 1/ap = (11 - 2*sqrt(10))/9 (Binet - de Moivre formula). a(0) = 1 (via L'Hopital's rule).
a(n) = 9^(n+1)*sinh(2*(n + 1)*arccsch(3))/(2*sqrt(10)). - Federico Provvedi, Feb 02 2021
MATHEMATICA
CoefficientList[Series[1/(1 - 22*x + 81*x^2), {x, 0, 50}], x] (* or *) LinearRecurrence[{22, -81}, {1, 22}, 50] (* G. C. Greubel, Dec 20 2017 *)
PROG
(PARI) Vec(1/(1 - 22*x + 81*x^2) + O(x^40)) \\ Michel Marcus, Sep 30 2014
(Magma) I:=[1, 22]; [n le 2 select I[n] else 22*Self(n-1) - 81*Self(n-2): n in [1..30]]; // G. C. Greubel, Dec 20 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Sep 30 2014
STATUS
approved